Spaces:
Sleeping
Sleeping
test
Browse files
api.py
CHANGED
@@ -203,29 +203,23 @@ async def process_audio(audio_data: bytes, language: str = "auto") -> str:
|
|
203 |
audio_buffer = BytesIO(audio_data)
|
204 |
waveform, sample_rate = torchaudio.load(audio_buffer)
|
205 |
|
206 |
-
print(waveform.shape)
|
207 |
|
208 |
# Convert to mono channel
|
209 |
if waveform.shape[0] > 1:
|
210 |
waveform = waveform.mean(dim=0)
|
|
|
211 |
|
212 |
# Convert to numpy array and normalize
|
213 |
input_wav = waveform.numpy().astype(np.float32)
|
|
|
214 |
|
215 |
# Resample to 16kHz if needed
|
216 |
if sample_rate != 16000:
|
217 |
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
218 |
input_wav = resampler(torch.from_numpy(input_wav)[None, :])[0, :].numpy()
|
219 |
|
220 |
-
|
221 |
-
target_length = 90 * 16000
|
222 |
-
current_length = input_wav.shape[1]
|
223 |
-
if current_length < target_length:
|
224 |
-
padding_length = target_length - current_length
|
225 |
-
padding = np.zeros((1, padding_length), dtype=np.float32)
|
226 |
-
print(input_wav.shape)
|
227 |
-
print(padding.shape)
|
228 |
-
input_wav = np.concatenate((input_wav, padding), axis=1)
|
229 |
|
230 |
# Model inference
|
231 |
text = model.generate(
|
|
|
203 |
audio_buffer = BytesIO(audio_data)
|
204 |
waveform, sample_rate = torchaudio.load(audio_buffer)
|
205 |
|
206 |
+
print(1, waveform.shape)
|
207 |
|
208 |
# Convert to mono channel
|
209 |
if waveform.shape[0] > 1:
|
210 |
waveform = waveform.mean(dim=0)
|
211 |
+
print(2, waveform.shape)
|
212 |
|
213 |
# Convert to numpy array and normalize
|
214 |
input_wav = waveform.numpy().astype(np.float32)
|
215 |
+
print(3, input_wav.shape)
|
216 |
|
217 |
# Resample to 16kHz if needed
|
218 |
if sample_rate != 16000:
|
219 |
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
220 |
input_wav = resampler(torch.from_numpy(input_wav)[None, :])[0, :].numpy()
|
221 |
|
222 |
+
print(4, input_wav.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# Model inference
|
225 |
text = model.generate(
|