import gradio as gr from ppdiffusers import StableDiffusionPipeline def generate_image(model, prompt, width, height, num_inference_steps, guidance_scale): if model == "shanshui_gen_style": pipe = StableDiffusionPipeline.from_pretrained("megemini/shanshui_gen_style", from_hf_hub=True) elif model == "shanshui_style": pipe = StableDiffusionPipeline.from_pretrained("megemini/shanshui_style", from_hf_hub=True) else: raise image = pipe( prompt, num_inference_steps=100, guidance_scale=7.5, height=height, width=width,).images[0] return image demo = gr.Blocks() with demo: gr.Markdown( r"### 【Hackathon】基于PaddleNLP PPDiffusers 训练 AIGC 趣味模型" ) gr.Markdown( r""" [【Hackathon】基于PaddleNLP PPDiffusers 训练 AIGC 趣味模型](https://github.com/PaddlePaddle/community/blob/master/hackthon_4th/%E3%80%90PaddlePaddle%20Hackathon%204%E3%80%91%20%E6%A8%A1%E5%9E%8B%E5%A5%97%E4%BB%B6%E5%BC%80%E6%BA%90%E8%B4%A1%E7%8C%AE%E4%BB%BB%E5%8A%A1%E5%90%88%E9%9B%86.md#no105%E5%9F%BA%E4%BA%8Epaddlenlp-ppdiffusers-%E8%AE%AD%E7%BB%83-aigc-%E8%B6%A3%E5%91%B3%E6%A8%A1%E5%9E%8B-) 模型 👉 [shanshui_style](https://huggingface.co/megemini/shanshui_style) 可以生成水墨山水画。 模型 👉 [shanshui_gen_style](https://huggingface.co/megemini/shanshui_gen_style) 可以生成水墨山水画的具像图片。 """ ) with gr.Row(): with gr.Column(): with gr.Row(): model = gr.Dropdown(["shanshui_gen_style", "shanshui_style"], label="Model") with gr.Row(): prompt = gr.Textbox(label='Prompt') with gr.Row(): width = gr.Slider(128, 768, value=512, step=8, label="Width") height = gr.Slider(128, 768, value=512, step=8, label="Height") with gr.Row(): num_inference_steps = gr.Textbox(label='num inference steps') guidance_scale = gr.Textbox(label='guidance scale') with gr.Row(): btn = gr.Button(value="Run") with gr.Column(): with gr.Row(): output = gr.Image() gr.Examples( [ [ "shanshui_gen_style", "A fantasy landscape in ", 512, 288, 100, 7.5, ], [ "shanshui_style", "A fantasy landscape in ", 512, 288, 100, 7.5, ], ], [model, prompt, width, height, num_inference_steps, guidance_scale] ) btn.click( generate_image, [model, prompt, width, height, num_inference_steps, guidance_scale], output) if __name__ == "__main__": demo.launch(debug=True)