Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import models, transforms
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
labels = {
|
7 |
+
0: "bluebell",
|
8 |
+
1: "buttercup",
|
9 |
+
2: "colts_foot",
|
10 |
+
3: "corn_poppy",
|
11 |
+
4: "cowslip",
|
12 |
+
5: "crocus",
|
13 |
+
6: "daffodil",
|
14 |
+
7: "daisy",
|
15 |
+
8: "dandelion",
|
16 |
+
9: "foxglove",
|
17 |
+
10: "fritillary",
|
18 |
+
11: "geranium",
|
19 |
+
12: "hibiscus",
|
20 |
+
13: "iris",
|
21 |
+
14: "lily_valley",
|
22 |
+
15: "pansy",
|
23 |
+
16: "petunia",
|
24 |
+
17: "rose",
|
25 |
+
18: "snowdrop",
|
26 |
+
19: "sunflower",
|
27 |
+
20: "tigerlily",
|
28 |
+
21: "tulip",
|
29 |
+
22: "wallflower",
|
30 |
+
23: "water_lily",
|
31 |
+
24: "wild_tulip",
|
32 |
+
25: "windflower"
|
33 |
+
}
|
34 |
+
|
35 |
+
# Load the trained ResNet-152 model
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
|
38 |
+
# Load model structure
|
39 |
+
model = models.resnet152()
|
40 |
+
num_classes = 26 # Update with your dataset's number of classes
|
41 |
+
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
|
42 |
+
|
43 |
+
# Load trained weights
|
44 |
+
model.load_state_dict(torch.load('trained_model.pth', map_location=device))
|
45 |
+
model = model.to(device)
|
46 |
+
model.eval() # Set to evaluation mode
|
47 |
+
|
48 |
+
# Preprocessing pipeline for incoming images
|
49 |
+
preprocess = transforms.Compose([
|
50 |
+
transforms.Resize((224, 224)), # ResNet default input size
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
53 |
+
])
|
54 |
+
|
55 |
+
def predict_image(image_path):
|
56 |
+
# Load and preprocess the image
|
57 |
+
image = Image.open(image_path).convert("RGB")
|
58 |
+
input_tensor = preprocess(image).unsqueeze(0).to(device)
|
59 |
+
|
60 |
+
# Predict
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(input_tensor)
|
63 |
+
_, predicted_class = torch.max(outputs, 1)
|
64 |
+
|
65 |
+
return predicted_class.item() # Return class index
|
66 |
+
|
67 |
+
import gradio as gr
|
68 |
+
|
69 |
+
def get_class_name(class_index):
|
70 |
+
return labels[class_index]
|
71 |
+
# Function to predict from an uploaded image
|
72 |
+
def classify_image(image):
|
73 |
+
predicted_class = predict_image(image) # Use the function from above
|
74 |
+
return f"Predicted Class: {predicted_class} : {get_class_name(predicted_class)}"
|
75 |
+
|
76 |
+
# Create Gradio interface
|
77 |
+
interface = gr.Interface(
|
78 |
+
fn=classify_image,
|
79 |
+
inputs=gr.Image(type="filepath"), # Accept image uploads
|
80 |
+
outputs="text",
|
81 |
+
title="Image Classification with ResNet-152",
|
82 |
+
description="Upload an image to classify it into one of 26 classes."
|
83 |
+
)
|
84 |
+
|
85 |
+
# Launch the app
|
86 |
+
interface.launch()
|