megiddo commited on
Commit
52eea83
·
verified ·
1 Parent(s): aeaa3a7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from PIL import Image
3
+ import torch
4
+ from torchvision import transforms, models
5
+
6
+ # Initialize Flask app
7
+ app = Flask(__name__)
8
+
9
+ # Load the trained model
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ # Define the model architecture
13
+ model = models.resnet152()
14
+ model.fc = torch.nn.Linear(model.fc.in_features, 26) # Adjust for the number of classes
15
+ model.load_state_dict(torch.load("model.pth", map_location=device))
16
+ model = model.to(device)
17
+ model.eval()
18
+
19
+ # Define preprocessing for the input image
20
+ preprocess = transforms.Compose([
21
+ transforms.Resize((224, 224)),
22
+ transforms.ToTensor(),
23
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
24
+ ])
25
+
26
+ # Class labels (replace with your dataset's classes)
27
+ CLASS_LABELS = [
28
+ "bluebell", "buttercup", "colts_foot", "corn_poppy", "cowslip",
29
+ "crocus", "daffodil", "daisy", "dandelion", "foxglove",
30
+ "fritillary", "geranium", "hibiscus", "iris", "lily_valley",
31
+ "pansy", "petunia", "rose", "snowdrop", "sunflower",
32
+ "tigerlily", "tulip", "wallflower", "water_lily", "wild_tulip",
33
+ "windflower"
34
+ ]
35
+
36
+ @app.route("/predict", methods=["POST"])
37
+ def predict():
38
+ if "file" not in request.files:
39
+ return jsonify({"error": "No file uploaded"}), 400
40
+
41
+ file = request.files["file"]
42
+
43
+ try:
44
+ # Load and preprocess the image
45
+ image = Image.open(file.stream).convert("RGB")
46
+ input_tensor = preprocess(image).unsqueeze(0).to(device)
47
+
48
+ # Perform inference
49
+ with torch.no_grad():
50
+ outputs = model(input_tensor)
51
+ _, predicted_class = torch.max(outputs, 1)
52
+
53
+ predicted_label = CLASS_LABELS[predicted_class.item()]
54
+ return jsonify({"predicted_class": predicted_label})
55
+
56
+ except Exception as e:
57
+ return jsonify({"error": f"Error during prediction: {str(e)}"}), 500
58
+
59
+ # Run the app (Hugging Face Spaces requires `app.run()` here)
60
+ if __name__ == "__main__":
61
+ app.run(host="0.0.0.0", port=8080)