Spaces:
Runtime error
Runtime error
File size: 5,155 Bytes
0696517 29f4452 23770b2 8767222 0696517 23770b2 0696517 984dfaf 0696517 a2621e6 76c8c49 19f06d7 a2621e6 0696517 528fa5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/13tu6v1reMxLATyBwle-BgpQrql9p4nqn
"""
#import os
#os.system("pip install fastai")
#from fastai.vision.all import *
#from fastai.basics import *
"""cyclegan_inference.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/12lelsBZXqNOe7xaXI724rEHAbppRt07y
"""
import gradio as gr
import torch
import torchvision
from torch import nn
from typing import List
#def ifnone(a, b): # a fastai-specific (fastcore) function used below, redefined so it's independent
# "`b` if `a` is None else `a`"
# return b if a is None else a
class ConvBlock(torch.nn.Module):
def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True):
super(ConvBlock,self).__init__()
self.conv = torch.nn.Conv2d(input_size,output_size,kernel_size,stride,padding)
self.batch_norm = batch_norm
self.bn = torch.nn.InstanceNorm2d(output_size)
self.activation = activation
self.relu = torch.nn.ReLU(True)
self.lrelu = torch.nn.LeakyReLU(0.2,True)
self.tanh = torch.nn.Tanh()
self.sigmoid = torch.nn.Sigmoid()
def forward(self,x):
if self.batch_norm:
out = self.bn(self.conv(x))
else:
out = self.conv(x)
if self.activation == 'relu':
return self.relu(out)
elif self.activation == 'lrelu':
return self.lrelu(out)
elif self.activation == 'tanh':
return self.tanh(out)
elif self.activation == 'no_act':
return out
elif self.activation =='sigmoid':
return self.sigmoid(out)
class ResnetBlock(torch.nn.Module):
def __init__(self,num_filter,kernel_size=3,stride=1,padding=0):
super(ResnetBlock,self).__init__()
conv1 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding)
conv2 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding)
bn = torch.nn.InstanceNorm2d(num_filter)
relu = torch.nn.ReLU(True)
pad = torch.nn.ReflectionPad2d(1)
self.resnet_block = torch.nn.Sequential(
pad,
conv1,
bn,
relu,
pad,
conv2,
bn
)
def forward(self,x):
out = self.resnet_block(x)
return out
class DeconvBlock(torch.nn.Module):
def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True):
super(DeconvBlock,self).__init__()
self.deconv = torch.nn.ConvTranspose2d(input_size,output_size,kernel_size,stride,padding)
self.batch_norm = batch_norm
self.bn = torch.nn.InstanceNorm2d(output_size)
self.activation = activation
self.relu = torch.nn.ReLU(True)
self.tanh = torch.nn.Tanh()
def forward(self,x):
if self.batch_norm:
out = self.bn(self.deconv(x))
else:
out = self.deconv(x)
if self.activation == 'relu':
return self.relu(out)
elif self.activation == 'lrelu':
return self.lrelu(out)
elif self.activation == 'tanh':
return self.tanh(out)
elif self.activation == 'no_act':
return out
class Generator(torch.nn.Module):
def __init__(self,input_dim,num_filter,output_dim,num_resnet):
super(Generator,self).__init__()
#Encoder
self.conv1 = ConvBlock(input_dim,num_filter,kernel_size=4,stride=2,padding=1)
self.conv2 = ConvBlock(num_filter,num_filter*2)
#Resnet blocks
self.resnet_blocks = []
for i in range(num_resnet):
self.resnet_blocks.append(ResnetBlock(num_filter*2))
self.resnet_blocks = torch.nn.Sequential(*self.resnet_blocks)
#Decoder
self.deconv1 = DeconvBlock(num_filter*2,num_filter)
self.deconv2 = DeconvBlock(num_filter,output_dim,activation='tanh')
def forward(self,x):
#Encoder
enc1 = self.conv1(x)
enc2 = self.conv2(enc1)
#Resnet blocks
res = self.resnet_blocks(enc2)
#Decoder
dec1 = self.deconv1(res)
dec2 = self.deconv2(dec1)
return dec2
model = Generator(3, 32, 3, 4).cpu() # input_dim, num_filter, output_dim, num_resnet
model.load_state_dict(torch.load('G_A_HW4_SAVE.pt',map_location=torch.device('cpu')))
print(model)
model.eval()
totensor = torchvision.transforms.ToTensor()
normalize_fn = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
topilimage = torchvision.transforms.ToPILImage()
def predict(input_1):
im1 = normalize_fn(totensor(input_1))
print(im1.shape)
preds1 = model(im1.unsqueeze(0))/2 + 0.5
print(preds1.shape)
return topilimage(preds1.squeeze(0).detach())
gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(256,256)), outputs="image", title='Emoji_CycleGAN').launch()
|