File size: 5,155 Bytes
0696517
 
 
 
 
 
 
 
29f4452
 
23770b2
 
8767222
0696517
 
 
 
 
 
 
 
 
 
 
 
 
23770b2
 
 
0696517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984dfaf
0696517
 
 
 
 
 
 
 
a2621e6
76c8c49
19f06d7
 
 
a2621e6
0696517
528fa5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
"""app.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/13tu6v1reMxLATyBwle-BgpQrql9p4nqn
"""
#import os
#os.system("pip install fastai")
#from fastai.vision.all import *
#from fastai.basics import *

"""cyclegan_inference.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/12lelsBZXqNOe7xaXI724rEHAbppRt07y
"""
import gradio as gr
import torch
import torchvision
from torch import nn
from typing import List

#def ifnone(a, b): # a fastai-specific (fastcore) function used below, redefined so it's independent
#    "`b` if `a` is None else `a`"
#    return b if a is None else a

class ConvBlock(torch.nn.Module):
    def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True):
        super(ConvBlock,self).__init__()
        self.conv = torch.nn.Conv2d(input_size,output_size,kernel_size,stride,padding)
        self.batch_norm = batch_norm
        self.bn = torch.nn.InstanceNorm2d(output_size)
        self.activation = activation
        self.relu = torch.nn.ReLU(True)
        self.lrelu = torch.nn.LeakyReLU(0.2,True)
        self.tanh = torch.nn.Tanh()
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self,x):
        if self.batch_norm:
            out = self.bn(self.conv(x))
        else:
            out = self.conv(x)
        
        if self.activation == 'relu':
            return self.relu(out)
        elif self.activation == 'lrelu':
            return self.lrelu(out)
        elif self.activation == 'tanh':
            return self.tanh(out)
        elif self.activation == 'no_act':
            return out
        elif self.activation =='sigmoid':
            return self.sigmoid(out)

    
class ResnetBlock(torch.nn.Module):
    def __init__(self,num_filter,kernel_size=3,stride=1,padding=0):
        super(ResnetBlock,self).__init__()
        conv1 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding)
        conv2 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding)
        bn = torch.nn.InstanceNorm2d(num_filter)
        relu = torch.nn.ReLU(True)
        pad = torch.nn.ReflectionPad2d(1)
        
        self.resnet_block = torch.nn.Sequential(
            pad,
            conv1,
            bn,
            relu,
            pad,
            conv2,
            bn
            )
    def forward(self,x):
        out = self.resnet_block(x)
        return out

class DeconvBlock(torch.nn.Module):
    def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True):
        super(DeconvBlock,self).__init__()
        self.deconv = torch.nn.ConvTranspose2d(input_size,output_size,kernel_size,stride,padding)
        self.batch_norm = batch_norm
        self.bn = torch.nn.InstanceNorm2d(output_size)
        self.activation = activation
        self.relu = torch.nn.ReLU(True)
        self.tanh = torch.nn.Tanh()
    def forward(self,x):
        if self.batch_norm:
            out = self.bn(self.deconv(x))
        else:
            out = self.deconv(x)
        if self.activation == 'relu':
            return self.relu(out)
        elif self.activation == 'lrelu':
            return self.lrelu(out)
        elif self.activation == 'tanh':
            return self.tanh(out)
        elif self.activation == 'no_act':
            return out

class Generator(torch.nn.Module):
    def __init__(self,input_dim,num_filter,output_dim,num_resnet):
        super(Generator,self).__init__()
        
        #Encoder
        self.conv1 = ConvBlock(input_dim,num_filter,kernel_size=4,stride=2,padding=1)
        self.conv2 = ConvBlock(num_filter,num_filter*2)
        #Resnet blocks
        self.resnet_blocks = []
        for i in range(num_resnet):
            self.resnet_blocks.append(ResnetBlock(num_filter*2))
        self.resnet_blocks = torch.nn.Sequential(*self.resnet_blocks)
        #Decoder
        self.deconv1 = DeconvBlock(num_filter*2,num_filter)
        self.deconv2 = DeconvBlock(num_filter,output_dim,activation='tanh')
    
    def forward(self,x):
        #Encoder
        enc1 = self.conv1(x)
        enc2 = self.conv2(enc1)
        #Resnet blocks
        res = self.resnet_blocks(enc2)
        #Decoder
        dec1 = self.deconv1(res)
        dec2 = self.deconv2(dec1)
        return dec2
    

model = Generator(3, 32, 3, 4).cpu() # input_dim, num_filter, output_dim, num_resnet
model.load_state_dict(torch.load('G_A_HW4_SAVE.pt',map_location=torch.device('cpu')))
print(model)
model.eval()

totensor = torchvision.transforms.ToTensor()
normalize_fn = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
topilimage = torchvision.transforms.ToPILImage()

def predict(input_1):
    im1 = normalize_fn(totensor(input_1))
    print(im1.shape)
    preds1 = model(im1.unsqueeze(0))/2 + 0.5
    print(preds1.shape)
    return topilimage(preds1.squeeze(0).detach())

gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(256,256)), outputs="image", title='Emoji_CycleGAN').launch()