# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/13tu6v1reMxLATyBwle-BgpQrql9p4nqn """ #import os #os.system("pip install fastai") #from fastai.vision.all import * #from fastai.basics import * """cyclegan_inference.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/12lelsBZXqNOe7xaXI724rEHAbppRt07y """ import gradio as gr import torch import torchvision from torch import nn from typing import List #def ifnone(a, b): # a fastai-specific (fastcore) function used below, redefined so it's independent # "`b` if `a` is None else `a`" # return b if a is None else a class ConvBlock(torch.nn.Module): def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True): super(ConvBlock,self).__init__() self.conv = torch.nn.Conv2d(input_size,output_size,kernel_size,stride,padding) self.batch_norm = batch_norm self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation self.relu = torch.nn.ReLU(True) self.lrelu = torch.nn.LeakyReLU(0.2,True) self.tanh = torch.nn.Tanh() self.sigmoid = torch.nn.Sigmoid() def forward(self,x): if self.batch_norm: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation == 'relu': return self.relu(out) elif self.activation == 'lrelu': return self.lrelu(out) elif self.activation == 'tanh': return self.tanh(out) elif self.activation == 'no_act': return out elif self.activation =='sigmoid': return self.sigmoid(out) class ResnetBlock(torch.nn.Module): def __init__(self,num_filter,kernel_size=3,stride=1,padding=0): super(ResnetBlock,self).__init__() conv1 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding) conv2 = torch.nn.Conv2d(num_filter,num_filter,kernel_size,stride,padding) bn = torch.nn.InstanceNorm2d(num_filter) relu = torch.nn.ReLU(True) pad = torch.nn.ReflectionPad2d(1) self.resnet_block = torch.nn.Sequential( pad, conv1, bn, relu, pad, conv2, bn ) def forward(self,x): out = self.resnet_block(x) return out class DeconvBlock(torch.nn.Module): def __init__(self,input_size,output_size,kernel_size=4,stride=2,padding=1,activation='relu',batch_norm=True): super(DeconvBlock,self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size,output_size,kernel_size,stride,padding) self.batch_norm = batch_norm self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation self.relu = torch.nn.ReLU(True) self.tanh = torch.nn.Tanh() def forward(self,x): if self.batch_norm: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation == 'relu': return self.relu(out) elif self.activation == 'lrelu': return self.lrelu(out) elif self.activation == 'tanh': return self.tanh(out) elif self.activation == 'no_act': return out class Generator(torch.nn.Module): def __init__(self,input_dim,num_filter,output_dim,num_resnet): super(Generator,self).__init__() #Encoder self.conv1 = ConvBlock(input_dim,num_filter,kernel_size=4,stride=2,padding=1) self.conv2 = ConvBlock(num_filter,num_filter*2) #Resnet blocks self.resnet_blocks = [] for i in range(num_resnet): self.resnet_blocks.append(ResnetBlock(num_filter*2)) self.resnet_blocks = torch.nn.Sequential(*self.resnet_blocks) #Decoder self.deconv1 = DeconvBlock(num_filter*2,num_filter) self.deconv2 = DeconvBlock(num_filter,output_dim,activation='tanh') def forward(self,x): #Encoder enc1 = self.conv1(x) enc2 = self.conv2(enc1) #Resnet blocks res = self.resnet_blocks(enc2) #Decoder dec1 = self.deconv1(res) dec2 = self.deconv2(dec1) return dec2 model = Generator(3, 32, 3, 4).cpu() # input_dim, num_filter, output_dim, num_resnet model.load_state_dict(torch.load('G_A_HW4_SAVE.pt',map_location=torch.device('cpu'))) print(model) model.eval() totensor = torchvision.transforms.ToTensor() normalize_fn = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) topilimage = torchvision.transforms.ToPILImage() def predict(input_1): im1 = normalize_fn(totensor(input_1)) print(im1.shape) preds1 = model(im1.unsqueeze(0))/2 + 0.5 print(preds1.shape) return topilimage(preds1.squeeze(0).detach()) gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(256,256)), outputs="image", title='Emoji_CycleGAN').launch()