File size: 30,090 Bytes
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
c81908d
 
 
 
 
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
c81908d
 
 
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334626
c81908d
 
 
 
 
 
c334626
 
c81908d
c334626
c81908d
 
 
c334626
c81908d
 
 
 
c334626
 
 
 
 
c81908d
c334626
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
c334626
 
c81908d
 
 
 
 
 
 
 
 
 
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334626
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
 
 
 
 
c334626
c81908d
c334626
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
c334626
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
c334626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81908d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c334626
c81908d
c334626
c81908d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------


import argparse
import torch
import numpy as np

import os

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision

import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10, ImageFolder
from datasets_prep.lsun import LSUN
from datasets_prep.stackmnist_data import StackedMNIST, _data_transforms_stacked_mnist
from datasets_prep.lmdb_datasets import LMDBDataset


from torch.multiprocessing import Process
import torch.distributed as dist
import shutil
import logging
import t5
def log_and_continue(exn):
    logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
    return True

def copy_source(file, output_dir):
    shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
            
def broadcast_params(params):
    for param in params:
        dist.broadcast(param.data, src=0)


#%% Diffusion coefficients 
def var_func_vp(t, beta_min, beta_max):
    log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
    var = 1. - torch.exp(2. * log_mean_coeff)
    return var

def var_func_geometric(t, beta_min, beta_max):
    return beta_min * ((beta_max / beta_min) ** t)

def extract(input, t, shape):
    out = torch.gather(input, 0, t)
    reshape = [shape[0]] + [1] * (len(shape) - 1)
    out = out.reshape(*reshape)

    return out

def get_time_schedule(args, device):
    n_timestep = args.num_timesteps
    eps_small = 1e-3
    t = np.arange(0, n_timestep + 1, dtype=np.float64)
    t = t / n_timestep
    t = torch.from_numpy(t) * (1. - eps_small)  + eps_small
    return t.to(device)

def get_sigma_schedule(args, device):
    n_timestep = args.num_timesteps
    beta_min = args.beta_min
    beta_max = args.beta_max
    eps_small = 1e-3
   
    t = np.arange(0, n_timestep + 1, dtype=np.float64)
    t = t / n_timestep
    t = torch.from_numpy(t) * (1. - eps_small) + eps_small
    
    if args.use_geometric:
        var = var_func_geometric(t, beta_min, beta_max)
    else:
        var = var_func_vp(t, beta_min, beta_max)
    alpha_bars = 1.0 - var
    betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
    
    first = torch.tensor(1e-8)
    betas = torch.cat((first[None], betas)).to(device)
    betas = betas.type(torch.float32)
    sigmas = betas**0.5
    a_s = torch.sqrt(1-betas)
    return sigmas, a_s, betas

class Diffusion_Coefficients():
    def __init__(self, args, device):
                
        self.sigmas, self.a_s, _ = get_sigma_schedule(args, device=device)
        self.a_s_cum = np.cumprod(self.a_s.cpu())
        self.sigmas_cum = np.sqrt(1 - self.a_s_cum ** 2)
        self.a_s_prev = self.a_s.clone()
        self.a_s_prev[-1] = 1
        
        self.a_s_cum = self.a_s_cum.to(device)
        self.sigmas_cum = self.sigmas_cum.to(device)
        self.a_s_prev = self.a_s_prev.to(device)
    
def q_sample(coeff, x_start, t, *, noise=None):
    """
    Diffuse the data (t == 0 means diffused for t step)
    """
    if noise is None:
      noise = torch.randn_like(x_start)
      
    x_t = extract(coeff.a_s_cum, t, x_start.shape) * x_start + \
          extract(coeff.sigmas_cum, t, x_start.shape) * noise
    
    return x_t

def q_sample_pairs(coeff, x_start, t):
    """
    Generate a pair of disturbed images for training
    :param x_start: x_0
    :param t: time step t
    :return: x_t, x_{t+1}
    """
    noise = torch.randn_like(x_start)
    x_t = q_sample(coeff, x_start, t)
    x_t_plus_one = extract(coeff.a_s, t+1, x_start.shape) * x_t + \
                   extract(coeff.sigmas, t+1, x_start.shape) * noise
    
    return x_t, x_t_plus_one
#%% posterior sampling
class Posterior_Coefficients():
    def __init__(self, args, device):
        
        _, _, self.betas = get_sigma_schedule(args, device=device)
        
        #we don't need the zeros
        self.betas = self.betas.type(torch.float32)[1:]
        
        self.alphas = 1 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, 0)
        self.alphas_cumprod_prev = torch.cat(
                                    (torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
                                        )               
        self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
        
        self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
        
        self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
        self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
        
        self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
        
def sample_posterior(coefficients, x_0,x_t, t):
    
    def q_posterior(x_0, x_t, t):
        mean = (
            extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
            + extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        var = extract(coefficients.posterior_variance, t, x_t.shape)
        log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
        return mean, var, log_var_clipped
    
  
    def p_sample(x_0, x_t, t):
        mean, _, log_var = q_posterior(x_0, x_t, t)
        
        noise = torch.randn_like(x_t)
        
        nonzero_mask = (1 - (t == 0).type(torch.float32))

        return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
            
    sample_x_pos = p_sample(x_0, x_t, t)
    
    return sample_x_pos

def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
    x = x_init
    with torch.no_grad():
        for i in reversed(range(n_time)):
            t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
          
            t_time = t
            latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
            x_0 = generator(x, t_time, latent_z, cond=cond)
            x_new = sample_posterior(coefficients, x_0, x, t)
            x = x_new.detach()
        
    return x


from utils import ResampledShards2

def train(rank, gpu, args):
    from score_sde.models.discriminator import Discriminator_small, Discriminator_large
    from score_sde.models.ncsnpp_generator_adagn import NCSNpp
    from EMA import EMA
    
    torch.manual_seed(args.seed + rank)
    torch.cuda.manual_seed(args.seed + rank)
    torch.cuda.manual_seed_all(args.seed + rank)
    device = torch.device('cuda:{}'.format(gpu))
    
    batch_size = args.batch_size
    
    nz = args.nz #latent dimension
    
    if args.dataset == 'cifar10':
        dataset = CIFAR10('./data', train=True, transform=transforms.Compose([
                        transforms.Resize(32),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]), download=True)
       
    
    elif args.dataset == 'stackmnist':
        train_transform, valid_transform = _data_transforms_stacked_mnist()
        dataset = StackedMNIST(root='./data', train=True, download=False, transform=train_transform)
        
    elif args.dataset == 'lsun':
        
        train_transform = transforms.Compose([
                        transforms.Resize(args.image_size),
                        transforms.CenterCrop(args.image_size),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
                    ])

        train_data = LSUN(root='/datasets/LSUN/', classes=['church_outdoor_train'], transform=train_transform)
        subset = list(range(0, 120000))
        dataset = torch.utils.data.Subset(train_data, subset)
      
    
    elif args.dataset == 'celeba_256':
        train_transform = transforms.Compose([
                transforms.Resize(args.image_size),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
            ])
        dataset = LMDBDataset(root='/datasets/celeba-lmdb/', name='celeba', train=True, transform=train_transform)
    elif args.dataset == "image_folder":
        train_transform = transforms.Compose([
                transforms.Resize(args.image_size),
                transforms.CenterCrop(args.image_size),
                # transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
            ])
        dataset = ImageFolder(root=args.dataset_root, transform=train_transform)
    elif args.dataset == 'wds':
        import webdataset as wds
        train_transform = transforms.Compose([
                transforms.Resize(args.image_size),
                transforms.CenterCrop(args.image_size),
                # transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
            ])
        # pipeline = [wds.SimpleShardList(args.dataset_root)]
        pipeline = [ResampledShards2(args.dataset_root)]
        pipeline.extend([
            wds.split_by_node,
            wds.split_by_worker,
            wds.tarfile_to_samples(handler=log_and_continue),
        ])
        pipeline.extend([
            wds.decode("pilrgb", handler=log_and_continue),
            wds.rename(image="jpg;png"),
            wds.map_dict(image=train_transform),
            wds.to_tuple("image","txt"),
            wds.batched(batch_size, partial=False),
        ])
        dataset = wds.DataPipeline(*pipeline)
        data_loader = wds.WebLoader(
            dataset,
            batch_size=None,
            shuffle=False,
            num_workers=8,
        )
    
    if args.dataset != "wds":
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset,
                                                                        num_replicas=args.world_size,
                                                                        rank=rank)
        data_loader = torch.utils.data.DataLoader(dataset,
                                                   batch_size=batch_size,
                                               shuffle=False,
                                               num_workers=4,
                                               drop_last=True,
                                               pin_memory=True,
                                               sampler=train_sampler,)
    text_encoder = t5.T5Encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
    args.cond_size = text_encoder.output_size
    netG = NCSNpp(args).to(device)
    nb_params = 0
    for param in netG.parameters():
        nb_params += param.flatten().shape[0]
    print("Number of generator parameters:", nb_params)
    

    if args.dataset == 'cifar10' or args.dataset == 'stackmnist':    
        netD = Discriminator_small(nc = 2*args.num_channels, ngf = args.ngf,
                               t_emb_dim = args.t_emb_dim,
                               cond_size=text_encoder.output_size,
                               act=nn.LeakyReLU(0.2)).to(device)
    else:
        netD = Discriminator_large(nc = 2*args.num_channels, ngf = args.ngf, 
                                   t_emb_dim = args.t_emb_dim,
                                cond_size=text_encoder.output_size,
                                   act=nn.LeakyReLU(0.2)).to(device)
    
    broadcast_params(netG.parameters())
    broadcast_params(netD.parameters())
    
    optimizerD = optim.Adam(netD.parameters(), lr=args.lr_d, betas = (args.beta1, args.beta2))
    optimizerG = optim.Adam(netG.parameters(), lr=args.lr_g, betas = (args.beta1, args.beta2))
    
    if args.use_ema:
        optimizerG = EMA(optimizerG, ema_decay=args.ema_decay)
    
    schedulerG = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerG, args.num_epoch, eta_min=1e-5)
    schedulerD = torch.optim.lr_scheduler.CosineAnnealingLR(optimizerD, args.num_epoch, eta_min=1e-5)
    
    
    
    #ddp
    netG = nn.parallel.DistributedDataParallel(netG, device_ids=[gpu])
    netD = nn.parallel.DistributedDataParallel(netD, device_ids=[gpu])

    
    exp = args.exp
    parent_dir = "./saved_info/dd_gan/{}".format(args.dataset)

    exp_path = os.path.join(parent_dir,exp)
    if rank == 0:
        if not os.path.exists(exp_path):
            os.makedirs(exp_path)
            copy_source(__file__, exp_path)
            shutil.copytree('score_sde/models', os.path.join(exp_path, 'score_sde/models'))
    
    
    coeff = Diffusion_Coefficients(args, device)
    pos_coeff = Posterior_Coefficients(args, device)
    T = get_time_schedule(args, device)
    
    checkpoint_file = os.path.join(exp_path, 'content.pth')
    if args.resume and os.path.exists(checkpoint_file):
        checkpoint = torch.load(checkpoint_file, map_location="cpu")
        init_epoch = checkpoint['epoch']
        epoch = init_epoch
        netG.load_state_dict(checkpoint['netG_dict'])
        # load G
        
        optimizerG.load_state_dict(checkpoint['optimizerG'])
        schedulerG.load_state_dict(checkpoint['schedulerG'])
        # load D
        netD.load_state_dict(checkpoint['netD_dict'])
        optimizerD.load_state_dict(checkpoint['optimizerD'])
        schedulerD.load_state_dict(checkpoint['schedulerD'])
        global_step = checkpoint['global_step']
        print("=> loaded checkpoint (epoch {})"
                  .format(checkpoint['epoch']))
    else:
        global_step, epoch, init_epoch = 0, 0, 0
    
    
    for epoch in range(init_epoch, args.num_epoch+1):
        if args.dataset == "wds":
            os.environ["WDS_EPOCH"] = str(epoch)
        else:
            train_sampler.set_epoch(epoch)
       
        for iteration, (x, y) in enumerate(data_loader):
            if args.dataset != "wds":
                y = [str(yi) for yi in y.tolist()]
            
            if args.classifier_free_guidance_proba:
                u = (np.random.uniform(size=len(y)) <= args.classifier_free_guidance_proba).tolist()
                y = ["" if ui else yi for yi,ui in zip(y, u)]

            with torch.no_grad():
                cond_pooled, cond, cond_mask = text_encoder(y, return_only_pooled=False)

            for p in netD.parameters():  
                p.requires_grad = True  
        
            
            netD.zero_grad()
            
            #sample from p(x_0)
            real_data = x.to(device, non_blocking=True)
            
            #sample t
            t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
            
            x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
            x_t.requires_grad = True
            
    
            # train with real
            D_real = netD(x_t, t, x_tp1.detach(), cond=cond_pooled).view(-1)
            
            errD_real = F.softplus(-D_real)
            errD_real = errD_real.mean()
            
            errD_real.backward(retain_graph=True)
            
            
            if args.lazy_reg is None:
                grad_real = torch.autograd.grad(
                            outputs=D_real.sum(), inputs=x_t, create_graph=True
                            )[0]
                grad_penalty = (
                                grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
                                ).mean()
                
                
                grad_penalty = args.r1_gamma / 2 * grad_penalty
                grad_penalty.backward()
            else:
                if global_step % args.lazy_reg == 0:
                    grad_real = torch.autograd.grad(
                            outputs=D_real.sum(), inputs=x_t, create_graph=True
                            )[0]
                    grad_penalty = (
                                grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
                                ).mean()
                
                
                    grad_penalty = args.r1_gamma / 2 * grad_penalty
                    grad_penalty.backward()

            # train with fake
            latent_z = torch.randn(batch_size, nz, device=device)
            
         
            x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
            x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
            
            output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_pooled).view(-1)
                
            
            errD_fake = F.softplus(output)
            errD_fake = errD_fake.mean()
            errD_fake.backward()
    
            
            errD = errD_real + errD_fake
            # Update D
            optimizerD.step()
            
        
            #update G
            for p in netD.parameters():
                p.requires_grad = False
            netG.zero_grad()
            
            
            t = torch.randint(0, args.num_timesteps, (real_data.size(0),), device=device)
            
            
            x_t, x_tp1 = q_sample_pairs(coeff, real_data, t)
                
            
            latent_z = torch.randn(batch_size, nz,device=device)
            
            
                
            x_0_predict = netG(x_tp1.detach(), t, latent_z, cond=(cond_pooled, cond, cond_mask))
            x_pos_sample = sample_posterior(pos_coeff, x_0_predict, x_tp1, t)
            
            output = netD(x_pos_sample, t, x_tp1.detach(), cond=cond_pooled).view(-1)
               
            
            errG = F.softplus(-output)
            errG = errG.mean()
            
            errG.backward()
            optimizerG.step()
                
           
            
            global_step += 1
            if iteration % 100 == 0:
                if rank == 0:
                    print('epoch {} iteration{}, G Loss: {}, D Loss: {}'.format(epoch,iteration, errG.item(), errD.item()))
            if iteration % 1000 == 0:
                x_t_1 = torch.randn_like(real_data)
                fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask))
                if rank == 0:
                    torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}_iteration_{}.png'.format(epoch, iteration)), normalize=True)
                    if args.save_content:
                        print('Saving content.')
                        content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
                                   'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(),
                                   'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(),
                                   'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()}
                        
                        torch.save(content, os.path.join(exp_path, 'content.pth'))
                        torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
                    if args.use_ema:
                        optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
                        
                    torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
                    if args.use_ema:
                        optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
            
        if not args.no_lr_decay:
            
            schedulerG.step()
            schedulerD.step()
        
        if rank == 0:
            if epoch % 10 == 0:
                torchvision.utils.save_image(x_pos_sample, os.path.join(exp_path, 'xpos_epoch_{}.png'.format(epoch)), normalize=True)
            
            x_t_1 = torch.randn_like(real_data)
            fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1, T, args, cond=(cond_pooled, cond, cond_mask))
            torchvision.utils.save_image(fake_sample, os.path.join(exp_path, 'sample_discrete_epoch_{}.png'.format(epoch)), normalize=True)
            
            if args.save_content:
                if epoch % args.save_content_every == 0:
                    print('Saving content.')
                    content = {'epoch': epoch + 1, 'global_step': global_step, 'args': args,
                               'netG_dict': netG.state_dict(), 'optimizerG': optimizerG.state_dict(),
                               'schedulerG': schedulerG.state_dict(), 'netD_dict': netD.state_dict(),
                               'optimizerD': optimizerD.state_dict(), 'schedulerD': schedulerD.state_dict()}
                    
                    torch.save(content, os.path.join(exp_path, 'content.pth'))
                    torch.save(content, os.path.join(exp_path, 'content_backup.pth'))
                
            if epoch % args.save_ckpt_every == 0:
                if args.use_ema:
                    optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
                    
                torch.save(netG.state_dict(), os.path.join(exp_path, 'netG_{}.pth'.format(epoch)))
                if args.use_ema:
                    optimizerG.swap_parameters_with_ema(store_params_in_ema=True)
            


def init_processes(rank, size, fn, args):
    """ Initialize the distributed environment. """

    import os

    args.rank = int(os.environ['SLURM_PROCID'])
    args.world_size =  int(os.getenv("SLURM_NTASKS"))
    args.local_rank = int(os.environ['SLURM_LOCALID'])
    print(args.rank, args.world_size)
    args.master_address = os.getenv("SLURM_LAUNCH_NODE_IPADDR")
    os.environ['MASTER_ADDR'] = args.master_address
    os.environ['MASTER_PORT'] = "12345"
    torch.cuda.set_device(args.local_rank)
    gpu = args.local_rank
    dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=args.world_size)
    fn(rank, gpu, args)
    dist.barrier()
    cleanup()  

def cleanup():
    dist.destroy_process_group()    
#%%
if __name__ == '__main__':
    parser = argparse.ArgumentParser('ddgan parameters')
    parser.add_argument('--seed', type=int, default=1024,
                        help='seed used for initialization')
    
    parser.add_argument('--resume', action='store_true',default=False)
    parser.add_argument('--masked_mean', action='store_true',default=False)
    parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
    parser.add_argument('--cross_attention', action='store_true',default=False)

    parser.add_argument('--image_size', type=int, default=32,
                            help='size of image')
    parser.add_argument('--num_channels', type=int, default=3,
                            help='channel of image')
    parser.add_argument('--centered', action='store_false', default=True,
                            help='-1,1 scale')
    parser.add_argument('--use_geometric', action='store_true',default=False)
    parser.add_argument('--beta_min', type=float, default= 0.1,
                            help='beta_min for diffusion')
    parser.add_argument('--beta_max', type=float, default=20.,
                            help='beta_max for diffusion')
    parser.add_argument('--classifier_free_guidance_proba', type=float, default=0.0)
    
    parser.add_argument('--num_channels_dae', type=int, default=128,
                            help='number of initial channels in denosing model')
    parser.add_argument('--n_mlp', type=int, default=3,
                            help='number of mlp layers for z')
    parser.add_argument('--ch_mult', nargs='+', type=int,
                            help='channel multiplier')
    parser.add_argument('--num_res_blocks', type=int, default=2,
                            help='number of resnet blocks per scale')
    parser.add_argument('--attn_resolutions', default=(16,),
                            help='resolution of applying attention')
    parser.add_argument('--dropout', type=float, default=0.,
                            help='drop-out rate')
    parser.add_argument('--resamp_with_conv', action='store_false', default=True,
                            help='always up/down sampling with conv')
    parser.add_argument('--conditional', action='store_false', default=True,
                            help='noise conditional')
    parser.add_argument('--fir', action='store_false', default=True,
                            help='FIR')
    parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
                            help='FIR kernel')
    parser.add_argument('--skip_rescale', action='store_false', default=True,
                            help='skip rescale')
    parser.add_argument('--resblock_type', default='biggan',
                            help='tyle of resnet block, choice in biggan and ddpm')
    parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
                            help='progressive type for output')
    parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
                        help='progressive type for input')
    parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
                        help='progressive combine method.')
    
    parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
                        help='type of time embedding')
    parser.add_argument('--fourier_scale', type=float, default=16.,
                            help='scale of fourier transform')
    parser.add_argument('--not_use_tanh', action='store_true',default=False)
    
    #geenrator and training
    parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
    parser.add_argument('--dataset', default='cifar10', help='name of dataset')
    parser.add_argument('--dataset_root', default='', help='name of dataset')
    parser.add_argument('--nz', type=int, default=100)
    parser.add_argument('--num_timesteps', type=int, default=4)

    parser.add_argument('--z_emb_dim', type=int, default=256)
    parser.add_argument('--t_emb_dim', type=int, default=256)
    parser.add_argument('--batch_size', type=int, default=128, help='input batch size')
    parser.add_argument('--num_epoch', type=int, default=1200)
    parser.add_argument('--ngf', type=int, default=64)

    parser.add_argument('--lr_g', type=float, default=1.5e-4, help='learning rate g')
    parser.add_argument('--lr_d', type=float, default=1e-4, help='learning rate d')
    parser.add_argument('--beta1', type=float, default=0.5,
                            help='beta1 for adam')
    parser.add_argument('--beta2', type=float, default=0.9,
                            help='beta2 for adam')
    parser.add_argument('--no_lr_decay',action='store_true', default=False)
    
    parser.add_argument('--use_ema', action='store_true', default=False,
                            help='use EMA or not')
    parser.add_argument('--ema_decay', type=float, default=0.9999, help='decay rate for EMA')
    
    parser.add_argument('--r1_gamma', type=float, default=0.05, help='coef for r1 reg')
    parser.add_argument('--lazy_reg', type=int, default=None,
                        help='lazy regulariation.')

    parser.add_argument('--save_content', action='store_true',default=False)
    parser.add_argument('--save_content_every', type=int, default=50, help='save content for resuming every x epochs')
    parser.add_argument('--save_ckpt_every', type=int, default=25, help='save ckpt every x epochs')
   
    ###ddp
    parser.add_argument('--num_proc_node', type=int, default=1,
                        help='The number of nodes in multi node env.')
    parser.add_argument('--num_process_per_node', type=int, default=1,
                        help='number of gpus')
    parser.add_argument('--node_rank', type=int, default=0,
                        help='The index of node.')
    parser.add_argument('--local_rank', type=int, default=0,
                        help='rank of process in the node')
    parser.add_argument('--master_address', type=str, default='127.0.0.1',
                        help='address for master')

   
    args = parser.parse_args()
    # args.world_size = args.num_proc_node * args.num_process_per_node
    args.world_size =  int(os.getenv("SLURM_NTASKS"))
    args.rank = int(os.environ['SLURM_PROCID'])
    # size = args.num_process_per_node
    init_processes(args.rank, args.world_size, train, args)
    # if size > 1:
        # processes = []
        # for rank in range(size):
            # args.local_rank = rank
            # global_rank = rank + args.node_rank * args.num_process_per_node
            # global_size = args.num_proc_node * args.num_process_per_node
            # args.global_rank = global_rank
            # print('Node rank %d, local proc %d, global proc %d' % (args.node_rank, rank, global_rank))
            # p = Process(target=init_processes, args=(global_rank, global_size, train, args))
            # p.start()
            # processes.append(p)
            
        # for p in processes:
            # p.join()
    # else:
        # print('starting in debug mode')
        
        # init_processes(0, size, train, args)