Spaces:
Runtime error
Runtime error
File size: 17,535 Bytes
c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d c334626 c81908d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for Denoising Diffusion GAN. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import numpy as np
import time
import os
import json
import torchvision
from score_sde.models.ncsnpp_generator_adagn import NCSNpp
import t5
#%% Diffusion coefficients
def var_func_vp(t, beta_min, beta_max):
log_mean_coeff = -0.25 * t ** 2 * (beta_max - beta_min) - 0.5 * t * beta_min
var = 1. - torch.exp(2. * log_mean_coeff)
return var
def var_func_geometric(t, beta_min, beta_max):
return beta_min * ((beta_max / beta_min) ** t)
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def get_time_schedule(args, device):
n_timestep = args.num_timesteps
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
return t.to(device)
def get_sigma_schedule(args, device):
n_timestep = args.num_timesteps
beta_min = args.beta_min
beta_max = args.beta_max
eps_small = 1e-3
t = np.arange(0, n_timestep + 1, dtype=np.float64)
t = t / n_timestep
t = torch.from_numpy(t) * (1. - eps_small) + eps_small
if args.use_geometric:
var = var_func_geometric(t, beta_min, beta_max)
else:
var = var_func_vp(t, beta_min, beta_max)
alpha_bars = 1.0 - var
betas = 1 - alpha_bars[1:] / alpha_bars[:-1]
first = torch.tensor(1e-8)
betas = torch.cat((first[None], betas)).to(device)
betas = betas.type(torch.float32)
sigmas = betas**0.5
a_s = torch.sqrt(1-betas)
return sigmas, a_s, betas
#%% posterior sampling
class Posterior_Coefficients():
def __init__(self, args, device):
_, _, self.betas = get_sigma_schedule(args, device=device)
#we don't need the zeros
self.betas = self.betas.type(torch.float32)[1:]
self.alphas = 1 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, 0)
self.alphas_cumprod_prev = torch.cat(
(torch.tensor([1.], dtype=torch.float32,device=device), self.alphas_cumprod[:-1]), 0
)
self.posterior_variance = self.betas * (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod)
self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = torch.rsqrt(self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod - 1)
self.posterior_mean_coef1 = (self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1 - self.alphas_cumprod))
self.posterior_mean_coef2 = ((1 - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1 - self.alphas_cumprod))
self.posterior_log_variance_clipped = torch.log(self.posterior_variance.clamp(min=1e-20))
def sample_posterior(coefficients, x_0,x_t, t):
def q_posterior(x_0, x_t, t):
mean = (
extract(coefficients.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(coefficients.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(coefficients.posterior_variance, t, x_t.shape)
log_var_clipped = extract(coefficients.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_sample(x_0, x_t, t):
mean, _, log_var = q_posterior(x_0, x_t, t)
noise = torch.randn_like(x_t)
nonzero_mask = (1 - (t == 0).type(torch.float32))
return mean + nonzero_mask[:,None,None,None] * torch.exp(0.5 * log_var) * noise
sample_x_pos = p_sample(x_0, x_t, t)
return sample_x_pos
def sample_from_model(coefficients, generator, n_time, x_init, T, opt, cond=None):
x = x_init
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)#.to(x.device)
x_0 = generator(x, t_time, latent_z, cond=cond)
x_new = sample_posterior(coefficients, x_0, x, t)
x = x_new.detach()
return x
def sample_from_model_classifier_free_guidance(coefficients, generator, n_time, x_init, T, opt, text_encoder, cond=None, guidance_scale=0):
x = x_init
null = text_encoder([""] * len(x_init), return_only_pooled=False)
with torch.no_grad():
for i in reversed(range(n_time)):
t = torch.full((x.size(0),), i, dtype=torch.int64).to(x.device)
t_time = t
latent_z = torch.randn(x.size(0), opt.nz, device=x.device)
x_0_uncond = generator(x, t_time, latent_z, cond=null)
x_0_cond = generator(x, t_time, latent_z, cond=cond)
eps_uncond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_uncond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
eps_cond = (x - torch.sqrt(coefficients.alphas_cumprod[i]) * x_0_cond) / torch.sqrt(1 - coefficients.alphas_cumprod[i])
# eps = eps_uncond + guidance_scale * (eps_cond - eps_uncond)
eps = eps_uncond * (1 - guidance_scale) + eps_cond * guidance_scale
x_0 = (1/torch.sqrt(coefficients.alphas_cumprod[i])) * (x - torch.sqrt(1 - coefficients.alphas_cumprod[i]) * eps)
# Dynamic thresholding
q = args.dynamic_thresholding_percentile
print("Before", x_0.min(), x_0.max())
if q:
shape = x_0.shape
x_0_v = x_0.view(shape[0], -1)
d = torch.quantile(torch.abs(x_0_v), q, dim=1, keepdim=True)
d.clamp_(min=1)
x_0_v = x_0_v.clamp(-d, d) / d
x_0 = x_0_v.view(shape)
print("After", x_0.min(), x_0.max())
x_new = sample_posterior(coefficients, x_0, x, t)
# Dynamic thresholding
# q = args.dynamic_thresholding_percentile
# shape = x_new.shape
# x_new_v = x_new.view(shape[0], -1)
# d = torch.quantile(torch.abs(x_new_v), q, dim=1, keepdim=True)
# d = torch.maximum(d, torch.ones_like(d))
# d.clamp_(min = 1.)
# x_new_v = torch.clamp(x_new_v, -d, d) / d
# x_new = x_new_v.view(shape)
x = x_new.detach()
return x
#%%
def sample_and_test(args):
torch.manual_seed(args.seed)
device = 'cuda:0'
text_encoder = t5.T5Encoder(name=args.text_encoder, masked_mean=args.masked_mean).to(device)
args.cond_size = text_encoder.output_size
# cond = text_encoder([str(yi%10) for yi in range(args.batch_size)])
if args.dataset == 'cifar10':
real_img_dir = 'pytorch_fid/cifar10_train_stat.npy'
elif args.dataset == 'celeba_256':
real_img_dir = 'pytorch_fid/celeba_256_stat.npy'
elif args.dataset == 'lsun':
real_img_dir = 'pytorch_fid/lsun_church_stat.npy'
else:
real_img_dir = args.real_img_dir
to_range_0_1 = lambda x: (x + 1.) / 2.
netG = NCSNpp(args).to(device)
ckpt = torch.load('./saved_info/dd_gan/{}/{}/netG_{}.pth'.format(args.dataset, args.exp, args.epoch_id), map_location=device)
#loading weights from ddp in single gpu
for key in list(ckpt.keys()):
ckpt[key[7:]] = ckpt.pop(key)
netG.load_state_dict(ckpt)
netG.eval()
T = get_time_schedule(args, device)
pos_coeff = Posterior_Coefficients(args, device)
save_dir = "./generated_samples/{}".format(args.dataset)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if args.compute_fid:
from torch.nn.functional import adaptive_avg_pool2d
from pytorch_fid.fid_score import calculate_activation_statistics, calculate_fid_given_paths, ImagePathDataset, compute_statistics_of_path, calculate_frechet_distance
from pytorch_fid.inception import InceptionV3
texts = open(args.cond_text).readlines()
#iters_needed = len(texts) // args.batch_size
#texts = list(map(lambda s:s.strip(), texts))
#ntimes = max(30000 // len(texts), 1)
#texts = texts * ntimes
print("Text size:", len(texts))
#print("Iters:", iters_needed)
i = 0
dims = 2048
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
inceptionv3 = InceptionV3([block_idx]).to(device)
if not args.real_img_dir.endswith("npz"):
real_mu, real_sigma = compute_statistics_of_path(
args.real_img_dir, inceptionv3, args.batch_size, dims, device,
resize=args.image_size,
)
np.savez("inception_statistics.npz", mu=real_mu, sigma=real_sigma)
else:
stats = np.load(args.real_img_dir)
real_mu = stats['mu']
real_sigma = stats['sigma']
fake_features = []
for b in range(0, len(texts), args.batch_size):
text = texts[b:b+args.batch_size]
with torch.no_grad():
cond = text_encoder(text, return_only_pooled=False)
bs = len(text)
t0 = time.time()
x_t_1 = torch.randn(bs, args.num_channels,args.image_size, args.image_size).to(device)
if args.guidance_scale:
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
else:
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
fake_sample = to_range_0_1(fake_sample)
"""
for j, x in enumerate(fake_sample):
index = i * args.batch_size + j
torchvision.utils.save_image(x, './generated_samples/{}/{}.jpg'.format(args.dataset, index))
"""
with torch.no_grad():
pred = inceptionv3(fake_sample)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
fake_features.append(pred)
if i % 10 == 0:
print('generating batch ', i, time.time() - t0)
"""
if i % 10 == 0:
ff = np.concatenate(fake_features)
fake_mu = np.mean(ff, axis=0)
fake_sigma = np.cov(ff, rowvar=False)
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
print("FID", fid)
"""
i += 1
fake_features = np.concatenate(fake_features)
fake_mu = np.mean(fake_features, axis=0)
fake_sigma = np.cov(fake_features, rowvar=False)
fid = calculate_frechet_distance(real_mu, real_sigma, fake_mu, fake_sigma)
dest = './saved_info/dd_gan/{}/{}/fid_{}.json'.format(args.dataset, args.exp, args.epoch_id)
results = {
"fid": fid,
}
results.update(vars(args))
with open(dest, "w") as fd:
json.dump(results, fd)
print('FID = {}'.format(fid))
else:
cond = text_encoder([args.cond_text] * args.batch_size, return_only_pooled=False)
x_t_1 = torch.randn(args.batch_size, args.num_channels,args.image_size, args.image_size).to(device)
if args.guidance_scale:
fake_sample = sample_from_model_classifier_free_guidance(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, text_encoder, cond=cond, guidance_scale=args.guidance_scale)
else:
fake_sample = sample_from_model(pos_coeff, netG, args.num_timesteps, x_t_1,T, args, cond=cond)
fake_sample = to_range_0_1(fake_sample)
torchvision.utils.save_image(fake_sample, './samples_{}.jpg'.format(args.dataset))
if __name__ == '__main__':
parser = argparse.ArgumentParser('ddgan parameters')
parser.add_argument('--seed', type=int, default=1024,
help='seed used for initialization')
parser.add_argument('--compute_fid', action='store_true', default=False,
help='whether or not compute FID')
parser.add_argument('--epoch_id', type=int,default=1000)
parser.add_argument('--guidance_scale', type=float,default=0)
parser.add_argument('--dynamic_thresholding_percentile', type=float,default=0)
parser.add_argument('--cond_text', type=str,default="0")
parser.add_argument('--cross_attention', action='store_true',default=False)
parser.add_argument('--num_channels', type=int, default=3,
help='channel of image')
parser.add_argument('--centered', action='store_false', default=True,
help='-1,1 scale')
parser.add_argument('--use_geometric', action='store_true',default=False)
parser.add_argument('--beta_min', type=float, default= 0.1,
help='beta_min for diffusion')
parser.add_argument('--beta_max', type=float, default=20.,
help='beta_max for diffusion')
parser.add_argument('--num_channels_dae', type=int, default=128,
help='number of initial channels in denosing model')
parser.add_argument('--n_mlp', type=int, default=3,
help='number of mlp layers for z')
parser.add_argument('--ch_mult', nargs='+', type=int,
help='channel multiplier')
parser.add_argument('--num_res_blocks', type=int, default=2,
help='number of resnet blocks per scale')
parser.add_argument('--attn_resolutions', default=(16,),
help='resolution of applying attention')
parser.add_argument('--dropout', type=float, default=0.,
help='drop-out rate')
parser.add_argument('--resamp_with_conv', action='store_false', default=True,
help='always up/down sampling with conv')
parser.add_argument('--conditional', action='store_false', default=True,
help='noise conditional')
parser.add_argument('--fir', action='store_false', default=True,
help='FIR')
parser.add_argument('--fir_kernel', default=[1, 3, 3, 1],
help='FIR kernel')
parser.add_argument('--skip_rescale', action='store_false', default=True,
help='skip rescale')
parser.add_argument('--resblock_type', default='biggan',
help='tyle of resnet block, choice in biggan and ddpm')
parser.add_argument('--progressive', type=str, default='none', choices=['none', 'output_skip', 'residual'],
help='progressive type for output')
parser.add_argument('--progressive_input', type=str, default='residual', choices=['none', 'input_skip', 'residual'],
help='progressive type for input')
parser.add_argument('--progressive_combine', type=str, default='sum', choices=['sum', 'cat'],
help='progressive combine method.')
parser.add_argument('--embedding_type', type=str, default='positional', choices=['positional', 'fourier'],
help='type of time embedding')
parser.add_argument('--fourier_scale', type=float, default=16.,
help='scale of fourier transform')
parser.add_argument('--not_use_tanh', action='store_true',default=False)
#geenrator and training
parser.add_argument('--exp', default='experiment_cifar_default', help='name of experiment')
parser.add_argument('--real_img_dir', default='./pytorch_fid/cifar10_train_stat.npy', help='directory to real images for FID computation')
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--image_size', type=int, default=32,
help='size of image')
parser.add_argument('--nz', type=int, default=100)
parser.add_argument('--num_timesteps', type=int, default=4)
parser.add_argument('--z_emb_dim', type=int, default=256)
parser.add_argument('--t_emb_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=200, help='sample generating batch size')
parser.add_argument('--text_encoder', type=str, default="google/t5-v1_1-base")
parser.add_argument('--masked_mean', action='store_true',default=False)
args = parser.parse_args()
sample_and_test(args)
|