Spaces:
Sleeping
Sleeping
File size: 9,801 Bytes
b5f6ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
def wait():
import streamlit as st
import time
progress_texts = ["Generating Code...:pencil:","Creating App...:running:","Rendering the demo page...:tv:"]
num_of_texts = len(progress_texts)
progress_texts_iter = iter(progress_texts)
my_bar = st.progress(0, "Initializing...")
with st.spinner('Processing...'):
start = end = 0
for i in range(num_of_texts):
text = next(progress_texts_iter)
start = end
end = start + 100 // num_of_texts
for percent_complete in range(start, end):
time.sleep(0.03*(num_of_texts-i))
my_bar.progress(percent_complete + 1, text=text)
my_bar.empty()
def language_translator(openai_api_key,demo_title="My Lang App"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def language_translator(input_language, output_language, text):
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0)
template = "You are a helpful assistant that translates {input_language} to {output_language}. Please provide the text to translate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(input_language=input_language, output_language=output_language, text=text)
return result
st.header(demo_title)
input_language = st.text_input("Input Language")
output_language = st.text_input("Output Language")
text = st.text_area("Text")
if st.button("Translate"):
result = language_translator(input_language, output_language, text)
st.write(result)
st.balloons()
def blog_post_generator(openai_api_key,demo_title="My Blogger"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def generate_blog_post(title):
print("Generating blog post")
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0)
template = "You are a helpful assistant that generates a blog post from the title: {title}. Please provide some content."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(title=title, text="")
return result
st.header(demo_title)
title = st.text_input("Enter the title of your blog post")
if st.button("Generate Blog Post"):
print("Generate")
with st.spinner("Generating the blog post..."):
result = generate_blog_post(title)
st.write(result)
st.balloons()
def grammer_corrector(openai_api_key,demo_title="My Grammerly"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def correct_grammar(text):
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0)
template = "You are a helpful assistant that corrects grammar. Please provide the text you want to correct."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(text=text)
return result
st.header(demo_title)
text = st.text_input("Enter the text you want to correct")
if st.button("Correct Grammar"):
result = correct_grammar(text)
st.write(result)
st.balloons()
def lyrics_generator(openai_api_key,demo_title="Lyrics Maker"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def generate_song(title):
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0)
template = "You are a helpful assistant that generates a song from the title: {title}. Please provide some lyrics."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(title=title, text="")
return result
st.header(demo_title)
title = st.text_input("Enter the song title:")
if st.button("Generate Song"):
with st.spinner("Generating song..."):
result = generate_song(title)
st.write(result)
st.balloons()
def twit_generator(openai_api_key,demo_title="My AutoTwitter"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def twitter(hashtag):
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0.1)
template = "You are a helpful assistant that generate twit from {hashtag}. Please provide the hashtag to generate a twit."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "Only generate the corresponding twit for this hashtag {hashtag}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(hashtag=hashtag)
return result
st.header(demo_title)
hashtag = st.text_input("Hashtag",placeholder="#")
if st.button("Generate"):
result = twitter(hashtag)
st.write(result)
st.balloons()
def email_generator(openai_api_key,demo_title="My AutoTwitter"):
import streamlit as st
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
def email(sender_name,receiver_name,purpose,keywords,tone):
chat = ChatOpenAI(openai_api_key=openai_api_key, temperature=0.1)
template = "You are a helpful assistant that generate email to a person according to the given purpose, keywords and tone."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = """Generate email for a person according to the given purpose, keywords and tone.
Sender Name:{sender_name}
Receiver Name:{receiver_name}
Purpose:{purpose}
Keywords:{keywords}
Tone:{tone}
Directly start to type an email
"""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)
result = chain.run(sender_name=sender_name, receiver_name=receiver_name, purpose=purpose, keywords=keywords, tone=tone)
return result
st.header(demo_title)
sender_name = st.text_input("Name of the sender")
receiver_name = st.text_input("Receiver of the sender")
purpose = st.text_input("Purpose of email")
keywords = st.text_input("Primary keywords",placeholder="comma separated list of keywords")
tone = st.text_input("Tone of the email")
if st.button("Generate"):
with st.spinner("Generating email..."):
result = email(sender_name,receiver_name,purpose,keywords,tone)
st.write(result)
st.balloons()
examples1 = [
"Language Translator π",
"Grammer Corrector π ",
"Blog post generator from title π"
]
examples2=[
"Lyrics generator from song title π€",
"Twit generation from hashtag π¦",
'Email generator :email:'
]
examples = examples1 + examples2
pages1 = [language_translator,grammer_corrector,blog_post_generator]
pages2=[lyrics_generator,twit_generator,email_generator]
pages = pages1 + pages2
example2pages={
example:page
for example,page in zip(examples,pages)
}
__all__ = ['language_translator','grammer_corrector','blog_post_generator','lyrics_generator','twit_generator',
'example2pages', 'examples', 'examples1', 'examples2', 'wait'] |