mencraft's picture
Update app.py
9231bf7
raw
history blame
2.39 kB
import os
import openai
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
from llama_index.callbacks.base import CallbackManager
from llama_index import (
LLMPredictor,
ServiceContext,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage,
)
from langchain.chat_models import ChatOpenAI
from llama_index.llms import OpenAI
from llama_index import VectorStoreIndex
import chainlit as cl
openai.api_key = os.environ.get("OPENAI_API_KEY")
# try:
# # rebuild storage context
# storage_context = StorageContext.from_defaults(persist_dir="./storage")
# # load index
# index = load_index_from_storage(storage_context)
# except:
# from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
# documents = SimpleDirectoryReader("./data").load_data()
# index = GPTVectorStoreIndex.from_documents(documents)
# index.storage_context.persist()
documents = SimpleDirectoryReader(
input_files=["hitchhikers.pdf"]
).load_data()
index = VectorStoreIndex.from_documents(documents)
@cl.on_chat_start
async def factory():
# llm_predictor = LLMPredictor(
# llm=ChatOpenAI(
# temperature=0,
# model_name="gpt-3.5-turbo",
# streaming=True,
# ),
# )
# service_context = ServiceContext.from_defaults(
# llm_predictor=llm_predictor,
# chunk_size=512,
# callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
# )
gpt_35_context = ServiceContext.from_defaults(
llm=OpenAI(model="gpt-3.5-turbo", temperature=0.3),
context_window=2048, # limit the context window artifically to test refine process
callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
)
query_engine = index.as_query_engine(
service_context=gpt_35_context
)
cl.user_session.set("query_engine", query_engine)
@cl.on_message
async def main(message):
query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine
response = await cl.make_async(query_engine.query)(message)
print(response)
response_message = cl.Message(content="")
# for token in response.response_gen:
# await response_message.stream_token(token=token)
# if response.response_txt:
response_message.content = response
await response_message.send()