Upload full_inference_pipeline.ipynb
Browse files
notebook/full_inference_pipeline.ipynb
ADDED
|
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"source": [
|
| 20 |
+
"! pip install faknow sentence-transformers chromadb\n"
|
| 21 |
+
],
|
| 22 |
+
"metadata": {
|
| 23 |
+
"colab": {
|
| 24 |
+
"base_uri": "https://localhost:8080/"
|
| 25 |
+
},
|
| 26 |
+
"id": "83T0FpMEgAK7",
|
| 27 |
+
"outputId": "4efafed8-69d4-4575-b473-825e6931b4c5"
|
| 28 |
+
},
|
| 29 |
+
"execution_count": 27,
|
| 30 |
+
"outputs": [
|
| 31 |
+
{
|
| 32 |
+
"output_type": "stream",
|
| 33 |
+
"name": "stdout",
|
| 34 |
+
"text": [
|
| 35 |
+
"Requirement already satisfied: faknow in /usr/local/lib/python3.10/dist-packages (0.0.3)\n",
|
| 36 |
+
"Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.6.1)\n",
|
| 37 |
+
"Requirement already satisfied: chromadb in /usr/local/lib/python3.10/dist-packages (0.4.24)\n",
|
| 38 |
+
"Requirement already satisfied: transformers>=4.26.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.38.2)\n",
|
| 39 |
+
"Requirement already satisfied: numpy>=1.23.4 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.25.2)\n",
|
| 40 |
+
"Requirement already satisfied: pandas>=1.5.2 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.5.3)\n",
|
| 41 |
+
"Requirement already satisfied: scikit-learn>=1.1.3 in /usr/local/lib/python3.10/dist-packages (from faknow) (1.2.2)\n",
|
| 42 |
+
"Requirement already satisfied: tensorboard>=2.10.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (2.15.2)\n",
|
| 43 |
+
"Requirement already satisfied: tqdm>=4.64.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.66.2)\n",
|
| 44 |
+
"Requirement already satisfied: jieba>=0.42.1 in /usr/local/lib/python3.10/dist-packages (from faknow) (0.42.1)\n",
|
| 45 |
+
"Requirement already satisfied: gensim>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (4.3.2)\n",
|
| 46 |
+
"Requirement already satisfied: pillow>=9.3.0 in /usr/local/lib/python3.10/dist-packages (from faknow) (9.4.0)\n",
|
| 47 |
+
"Requirement already satisfied: nltk>=3.7 in /usr/local/lib/python3.10/dist-packages (from faknow) (3.8.1)\n",
|
| 48 |
+
"Requirement already satisfied: sphinx-markdown-tables>=0.0.17 in /usr/local/lib/python3.10/dist-packages (from faknow) (0.0.17)\n",
|
| 49 |
+
"Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.2.1+cu121)\n",
|
| 50 |
+
"Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
|
| 51 |
+
"Requirement already satisfied: huggingface-hub>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.20.3)\n",
|
| 52 |
+
"Requirement already satisfied: build>=1.0.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.2.1)\n",
|
| 53 |
+
"Requirement already satisfied: requests>=2.28 in /usr/local/lib/python3.10/dist-packages (from chromadb) (2.31.0)\n",
|
| 54 |
+
"Requirement already satisfied: pydantic>=1.9 in /usr/local/lib/python3.10/dist-packages (from chromadb) (2.6.4)\n",
|
| 55 |
+
"Requirement already satisfied: chroma-hnswlib==0.7.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.7.3)\n",
|
| 56 |
+
"Requirement already satisfied: fastapi>=0.95.2 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.110.0)\n",
|
| 57 |
+
"Requirement already satisfied: uvicorn[standard]>=0.18.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.29.0)\n",
|
| 58 |
+
"Requirement already satisfied: posthog>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.5.0)\n",
|
| 59 |
+
"Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.10.0)\n",
|
| 60 |
+
"Requirement already satisfied: pulsar-client>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.4.0)\n",
|
| 61 |
+
"Requirement already satisfied: onnxruntime>=1.14.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.17.1)\n",
|
| 62 |
+
"Requirement already satisfied: opentelemetry-api>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
| 63 |
+
"Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
| 64 |
+
"Requirement already satisfied: opentelemetry-instrumentation-fastapi>=0.41b0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.45b0)\n",
|
| 65 |
+
"Requirement already satisfied: opentelemetry-sdk>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.24.0)\n",
|
| 66 |
+
"Requirement already satisfied: tokenizers>=0.13.2 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.15.2)\n",
|
| 67 |
+
"Requirement already satisfied: pypika>=0.48.9 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.48.9)\n",
|
| 68 |
+
"Requirement already satisfied: overrides>=7.3.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (7.7.0)\n",
|
| 69 |
+
"Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/dist-packages (from chromadb) (6.4.0)\n",
|
| 70 |
+
"Requirement already satisfied: grpcio>=1.58.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (1.62.1)\n",
|
| 71 |
+
"Requirement already satisfied: bcrypt>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.1.2)\n",
|
| 72 |
+
"Requirement already satisfied: typer>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (0.9.4)\n",
|
| 73 |
+
"Requirement already satisfied: kubernetes>=28.1.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (29.0.0)\n",
|
| 74 |
+
"Requirement already satisfied: tenacity>=8.2.3 in /usr/local/lib/python3.10/dist-packages (from chromadb) (8.2.3)\n",
|
| 75 |
+
"Requirement already satisfied: PyYAML>=6.0.0 in /usr/local/lib/python3.10/dist-packages (from chromadb) (6.0.1)\n",
|
| 76 |
+
"Requirement already satisfied: mmh3>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from chromadb) (4.1.0)\n",
|
| 77 |
+
"Requirement already satisfied: orjson>=3.9.12 in /usr/local/lib/python3.10/dist-packages (from chromadb) (3.10.0)\n",
|
| 78 |
+
"Requirement already satisfied: packaging>=19.1 in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (24.0)\n",
|
| 79 |
+
"Requirement already satisfied: pyproject_hooks in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (1.0.0)\n",
|
| 80 |
+
"Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from build>=1.0.3->chromadb) (2.0.1)\n",
|
| 81 |
+
"Requirement already satisfied: starlette<0.37.0,>=0.36.3 in /usr/local/lib/python3.10/dist-packages (from fastapi>=0.95.2->chromadb) (0.36.3)\n",
|
| 82 |
+
"Requirement already satisfied: smart-open>=1.8.1 in /usr/local/lib/python3.10/dist-packages (from gensim>=4.2.0->faknow) (6.4.0)\n",
|
| 83 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (3.13.3)\n",
|
| 84 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (2023.6.0)\n",
|
| 85 |
+
"Requirement already satisfied: certifi>=14.05.14 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2024.2.2)\n",
|
| 86 |
+
"Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.16.0)\n",
|
| 87 |
+
"Requirement already satisfied: python-dateutil>=2.5.3 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.8.2)\n",
|
| 88 |
+
"Requirement already satisfied: google-auth>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.27.0)\n",
|
| 89 |
+
"Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.7.0)\n",
|
| 90 |
+
"Requirement already satisfied: requests-oauthlib in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (1.4.1)\n",
|
| 91 |
+
"Requirement already satisfied: oauthlib>=3.2.2 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (3.2.2)\n",
|
| 92 |
+
"Requirement already satisfied: urllib3>=1.24.2 in /usr/local/lib/python3.10/dist-packages (from kubernetes>=28.1.0->chromadb) (2.0.7)\n",
|
| 93 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (8.1.7)\n",
|
| 94 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (1.3.2)\n",
|
| 95 |
+
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk>=3.7->faknow) (2023.12.25)\n",
|
| 96 |
+
"Requirement already satisfied: coloredlogs in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (15.0.1)\n",
|
| 97 |
+
"Requirement already satisfied: flatbuffers in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (24.3.25)\n",
|
| 98 |
+
"Requirement already satisfied: protobuf in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (3.20.3)\n",
|
| 99 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from onnxruntime>=1.14.1->chromadb) (1.12)\n",
|
| 100 |
+
"Requirement already satisfied: deprecated>=1.2.6 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api>=1.2.0->chromadb) (1.2.14)\n",
|
| 101 |
+
"Requirement already satisfied: importlib-metadata<=7.0,>=6.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-api>=1.2.0->chromadb) (7.0.0)\n",
|
| 102 |
+
"Requirement already satisfied: googleapis-common-protos~=1.52 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.63.0)\n",
|
| 103 |
+
"Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.24.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.24.0)\n",
|
| 104 |
+
"Requirement already satisfied: opentelemetry-proto==1.24.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb) (1.24.0)\n",
|
| 105 |
+
"Requirement already satisfied: opentelemetry-instrumentation-asgi==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
| 106 |
+
"Requirement already satisfied: opentelemetry-instrumentation==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
| 107 |
+
"Requirement already satisfied: opentelemetry-semantic-conventions==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
| 108 |
+
"Requirement already satisfied: opentelemetry-util-http==0.45b0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (0.45b0)\n",
|
| 109 |
+
"Requirement already satisfied: setuptools>=16.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (67.7.2)\n",
|
| 110 |
+
"Requirement already satisfied: wrapt<2.0.0,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (1.14.1)\n",
|
| 111 |
+
"Requirement already satisfied: asgiref~=3.0 in /usr/local/lib/python3.10/dist-packages (from opentelemetry-instrumentation-asgi==0.45b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb) (3.8.1)\n",
|
| 112 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.5.2->faknow) (2023.4)\n",
|
| 113 |
+
"Requirement already satisfied: monotonic>=1.5 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb) (1.6)\n",
|
| 114 |
+
"Requirement already satisfied: backoff>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from posthog>=2.4.0->chromadb) (2.2.1)\n",
|
| 115 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb) (0.6.0)\n",
|
| 116 |
+
"Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.9->chromadb) (2.16.3)\n",
|
| 117 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.28->chromadb) (3.3.2)\n",
|
| 118 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.28->chromadb) (3.6)\n",
|
| 119 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.1.3->faknow) (3.4.0)\n",
|
| 120 |
+
"Requirement already satisfied: markdown>=3.4 in /usr/local/lib/python3.10/dist-packages (from sphinx-markdown-tables>=0.0.17->faknow) (3.6)\n",
|
| 121 |
+
"Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (1.4.0)\n",
|
| 122 |
+
"Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (1.2.0)\n",
|
| 123 |
+
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (0.7.2)\n",
|
| 124 |
+
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.10.0->faknow) (3.0.1)\n",
|
| 125 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.2.1)\n",
|
| 126 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.3)\n",
|
| 127 |
+
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
| 128 |
+
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
| 129 |
+
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
| 130 |
+
"Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (8.9.2.26)\n",
|
| 131 |
+
"Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.3.1)\n",
|
| 132 |
+
"Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.0.2.54)\n",
|
| 133 |
+
"Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (10.3.2.106)\n",
|
| 134 |
+
"Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.4.5.107)\n",
|
| 135 |
+
"Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.0.106)\n",
|
| 136 |
+
"Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.19.3)\n",
|
| 137 |
+
"Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
|
| 138 |
+
"Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.2.0)\n",
|
| 139 |
+
"Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers) (12.4.99)\n",
|
| 140 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.26.1->faknow) (0.4.2)\n",
|
| 141 |
+
"Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.14.0)\n",
|
| 142 |
+
"Requirement already satisfied: httptools>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.6.1)\n",
|
| 143 |
+
"Requirement already satisfied: python-dotenv>=0.13 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (1.0.1)\n",
|
| 144 |
+
"Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.19.0)\n",
|
| 145 |
+
"Requirement already satisfied: watchfiles>=0.13 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.21.0)\n",
|
| 146 |
+
"Requirement already satisfied: websockets>=10.4 in /usr/local/lib/python3.10/dist-packages (from uvicorn[standard]>=0.18.3->chromadb) (12.0)\n",
|
| 147 |
+
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (5.3.3)\n",
|
| 148 |
+
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.4.0)\n",
|
| 149 |
+
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (4.9)\n",
|
| 150 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.10/dist-packages (from importlib-metadata<=7.0,>=6.0->opentelemetry-api>=1.2.0->chromadb) (3.18.1)\n",
|
| 151 |
+
"Requirement already satisfied: anyio<5,>=3.4.0 in /usr/local/lib/python3.10/dist-packages (from starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (3.7.1)\n",
|
| 152 |
+
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.10.0->faknow) (2.1.5)\n",
|
| 153 |
+
"Requirement already satisfied: humanfriendly>=9.1 in /usr/local/lib/python3.10/dist-packages (from coloredlogs->onnxruntime>=1.14.1->chromadb) (10.0)\n",
|
| 154 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->onnxruntime>=1.14.1->chromadb) (1.3.0)\n",
|
| 155 |
+
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.4.0->starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (1.3.1)\n",
|
| 156 |
+
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.4.0->starlette<0.37.0,>=0.36.3->fastapi>=0.95.2->chromadb) (1.2.0)\n",
|
| 157 |
+
"Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=28.1.0->chromadb) (0.6.0)\n"
|
| 158 |
+
]
|
| 159 |
+
}
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"source": [],
|
| 165 |
+
"metadata": {
|
| 166 |
+
"id": "kG2sAMShgAOV"
|
| 167 |
+
},
|
| 168 |
+
"execution_count": 27,
|
| 169 |
+
"outputs": []
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"source": [
|
| 174 |
+
"import pandas as pd\n",
|
| 175 |
+
"import os\n",
|
| 176 |
+
"import chromadb\n",
|
| 177 |
+
"from chromadb.utils import embedding_functions\n",
|
| 178 |
+
"import math\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"def create_domain_identification_database(vdb_path: str,collection_name:str , df: pd.DataFrame) -> None:\n",
|
| 185 |
+
" \"\"\"This function processes the dataframe into the required format, and then creates the following collections in a ChromaDB instance\n",
|
| 186 |
+
" 1. domain_identification_collection - Contains input text embeddings, and the metadata the other columns\n",
|
| 187 |
+
"\n",
|
| 188 |
+
" Args:\n",
|
| 189 |
+
" collection_name (str) : name of database collection\n",
|
| 190 |
+
" vdb_path (str): Relative path of the location of the ChromaDB instance.\n",
|
| 191 |
+
" df (pd.DataFrame): task scheduling dataset.\n",
|
| 192 |
+
"\n",
|
| 193 |
+
" \"\"\"\n",
|
| 194 |
+
"\n",
|
| 195 |
+
" #identify the saving location of the ChromaDB\n",
|
| 196 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
| 197 |
+
"\n",
|
| 198 |
+
" #extract the embedding from hugging face\n",
|
| 199 |
+
" embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=\"sentence-transformers/LaBSE\")\n",
|
| 200 |
+
"\n",
|
| 201 |
+
" #creating the collection\n",
|
| 202 |
+
" domain_identification_collection = chroma_client.create_collection(\n",
|
| 203 |
+
" name=collection_name,\n",
|
| 204 |
+
" embedding_function=embedding_function,\n",
|
| 205 |
+
" )\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"\n",
|
| 208 |
+
" # the main text \"query\" that will be embedded\n",
|
| 209 |
+
" domain_identification_documents = [row.query for row in df.itertuples()]\n",
|
| 210 |
+
"\n",
|
| 211 |
+
" # the metadata\n",
|
| 212 |
+
" domain_identification_metadata = [\n",
|
| 213 |
+
" {\"domain\": row.domain , \"label\": row.label}\n",
|
| 214 |
+
" for row in df.itertuples()\n",
|
| 215 |
+
" ]\n",
|
| 216 |
+
"\n",
|
| 217 |
+
" #index\n",
|
| 218 |
+
" domain_ids = [\"domain_id \" + str(row.Index) for row in df.itertuples()]\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"\n",
|
| 221 |
+
" length = len(df)\n",
|
| 222 |
+
" num_iteration = length / 166\n",
|
| 223 |
+
" num_iteration = math.ceil(num_iteration)\n",
|
| 224 |
+
"\n",
|
| 225 |
+
" start = 0\n",
|
| 226 |
+
" # start adding the the vectors\n",
|
| 227 |
+
" for i in range(num_iteration):\n",
|
| 228 |
+
" if i == num_iteration - 1 :\n",
|
| 229 |
+
" domain_identification_collection.add(documents=domain_identification_documents[start:], metadatas=domain_identification_metadata[start:], ids=domain_ids[start:])\n",
|
| 230 |
+
" else:\n",
|
| 231 |
+
" end = start + 166\n",
|
| 232 |
+
" domain_identification_collection.add(documents=domain_identification_documents[start:end], metadatas=domain_identification_metadata[start:end], ids=domain_ids[start:end])\n",
|
| 233 |
+
" start = end\n",
|
| 234 |
+
" return None\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"def delete_collection_from_vector_db(vdb_path: str, collection_name: str) -> None:\n",
|
| 239 |
+
" \"\"\"Deletes a particular collection from the persistent ChromaDB instance.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
" Args:\n",
|
| 242 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
| 243 |
+
" collection_name (str): Name of the collection to be deleted.\n",
|
| 244 |
+
" \"\"\"\n",
|
| 245 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
| 246 |
+
" chroma_client.delete_collection(collection_name)\n",
|
| 247 |
+
" return None\n",
|
| 248 |
+
"\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"def list_collections_from_vector_db(vdb_path: str) -> None:\n",
|
| 251 |
+
" \"\"\"Lists all the available collections from the persistent ChromaDB instance.\n",
|
| 252 |
+
"\n",
|
| 253 |
+
" Args:\n",
|
| 254 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
| 255 |
+
" \"\"\"\n",
|
| 256 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
| 257 |
+
" print(chroma_client.list_collections())\n",
|
| 258 |
+
"\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"def get_collection_from_vector_db(\n",
|
| 261 |
+
" vdb_path: str, collection_name: str\n",
|
| 262 |
+
") -> chromadb.Collection:\n",
|
| 263 |
+
" \"\"\"Fetches a particular ChromaDB collection object from the persistent ChromaDB instance.\n",
|
| 264 |
+
"\n",
|
| 265 |
+
" Args:\n",
|
| 266 |
+
" vdb_path (str): Path of the persistent ChromaDB instance.\n",
|
| 267 |
+
" collection_name (str): Name of the collection which needs to be retrieved.\n",
|
| 268 |
+
" \"\"\"\n",
|
| 269 |
+
" chroma_client = chromadb.PersistentClient(path=vdb_path)\n",
|
| 270 |
+
"\n",
|
| 271 |
+
" huggingface_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=\"sentence-transformers/LaBSE\")\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"\n",
|
| 276 |
+
" collection = chroma_client.get_collection(\n",
|
| 277 |
+
" name=collection_name, embedding_function=huggingface_ef\n",
|
| 278 |
+
" )\n",
|
| 279 |
+
"\n",
|
| 280 |
+
" return collection\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"def retrieval( input_text : str,\n",
|
| 284 |
+
" num_results : int,\n",
|
| 285 |
+
" collection: chromadb.Collection ):\n",
|
| 286 |
+
"\n",
|
| 287 |
+
" \"\"\"fetches the domain name from the collection based on the semantic similarity\n",
|
| 288 |
+
"\n",
|
| 289 |
+
" args:\n",
|
| 290 |
+
" input_text : the received text which can be news , posts , or tweets\n",
|
| 291 |
+
" num_results : number of fetched examples from the collection\n",
|
| 292 |
+
" collection : the extracted collection from the database that we will fetch examples from\n",
|
| 293 |
+
"\n",
|
| 294 |
+
" \"\"\"\n",
|
| 295 |
+
"\n",
|
| 296 |
+
"\n",
|
| 297 |
+
" fetched_domain = collection.query(\n",
|
| 298 |
+
" query_texts = [input_text],\n",
|
| 299 |
+
" n_results = num_results,\n",
|
| 300 |
+
" )\n",
|
| 301 |
+
"\n",
|
| 302 |
+
" #extracting domain name and label from the featched domains\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" domain = fetched_domain[\"metadatas\"][0][0][\"domain\"]\n",
|
| 305 |
+
" label = fetched_domain[\"metadatas\"][0][0][\"label\"]\n",
|
| 306 |
+
" distance = fetched_domain[\"distances\"][0][0]\n",
|
| 307 |
+
"\n",
|
| 308 |
+
" return domain , label , distance"
|
| 309 |
+
],
|
| 310 |
+
"metadata": {
|
| 311 |
+
"id": "-_UqusZqgAQP"
|
| 312 |
+
},
|
| 313 |
+
"execution_count": 28,
|
| 314 |
+
"outputs": []
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"cell_type": "code",
|
| 318 |
+
"source": [
|
| 319 |
+
"from transformers import pipeline\n",
|
| 320 |
+
"\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"def english_information_extraction(text: str):\n",
|
| 327 |
+
"\n",
|
| 328 |
+
"\n",
|
| 329 |
+
"\n",
|
| 330 |
+
"\n",
|
| 331 |
+
" zeroshot_classifier = pipeline(\"zero-shot-classification\", model=\"MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33\")\n",
|
| 332 |
+
"\n",
|
| 333 |
+
" hypothesis_template_domain = \"This text is about {}\"\n",
|
| 334 |
+
" domain_classes = [\"women\" , \"muslims\" , \"tamil\" , \"sinhala\" , \"other\"]\n",
|
| 335 |
+
" domains_output= zeroshot_classifier(text, domain_classes , hypothesis_template=hypothesis_template_domain, multi_label=False)\n",
|
| 336 |
+
"\n",
|
| 337 |
+
" sentiment_discrimination_prompt = f\"the content of this text about {domains_output['labels'][0]} \"\n",
|
| 338 |
+
" hypothesis_template_sentiment = \"is {} sentiment\"\n",
|
| 339 |
+
" hypothesis_template_sentiment = sentiment_discrimination_prompt + hypothesis_template_sentiment\n",
|
| 340 |
+
"\n",
|
| 341 |
+
" sentiment_classes = [\"positive\" ,\"neutral\", \"negative\"]\n",
|
| 342 |
+
" sentiment_output= zeroshot_classifier(text, sentiment_classes , hypothesis_template=hypothesis_template_sentiment, multi_label=False)\n",
|
| 343 |
+
"\n",
|
| 344 |
+
" hypothesis_template_discrimination = \"is {}\"\n",
|
| 345 |
+
" hypothesis_template_discrimination = sentiment_discrimination_prompt + hypothesis_template_discrimination\n",
|
| 346 |
+
"\n",
|
| 347 |
+
" discrimination_classes = [\"hateful\" , \"not hateful\"]\n",
|
| 348 |
+
"\n",
|
| 349 |
+
" discrimination_output= zeroshot_classifier(text, discrimination_classes , hypothesis_template=hypothesis_template_discrimination, multi_label=False)\n",
|
| 350 |
+
"\n",
|
| 351 |
+
" domain_label , domain_score = domains_output[\"labels\"][0] , domains_output[\"scores\"][0]\n",
|
| 352 |
+
" sentiment_label , sentiment_score = sentiment_output[\"labels\"][0] , sentiment_output[\"scores\"][0]\n",
|
| 353 |
+
" discrimination_label , discrimination_score = discrimination_output[\"labels\"][0] , discrimination_output[\"scores\"][0]\n",
|
| 354 |
+
"\n",
|
| 355 |
+
" return {\"domain_label\" : domain_label,\n",
|
| 356 |
+
" \"domain_score\" : domain_score,\n",
|
| 357 |
+
" \"sentiment_label\" : sentiment_label,\n",
|
| 358 |
+
" \"sentiment_score\" : sentiment_score,\n",
|
| 359 |
+
" \"discrimination_label\" : discrimination_label,\n",
|
| 360 |
+
" \"discrimination_score\": discrimination_score}\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"\n"
|
| 364 |
+
],
|
| 365 |
+
"metadata": {
|
| 366 |
+
"id": "G9EL047MfDDY"
|
| 367 |
+
},
|
| 368 |
+
"execution_count": 29,
|
| 369 |
+
"outputs": []
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"cell_type": "code",
|
| 373 |
+
"source": [],
|
| 374 |
+
"metadata": {
|
| 375 |
+
"id": "jmzyvmLQgASa"
|
| 376 |
+
},
|
| 377 |
+
"execution_count": 29,
|
| 378 |
+
"outputs": []
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"source": [
|
| 383 |
+
"#the model\n",
|
| 384 |
+
"from typing import List, Optional, Tuple\n",
|
| 385 |
+
"\n",
|
| 386 |
+
"import torch\n",
|
| 387 |
+
"from torch import Tensor\n",
|
| 388 |
+
"from torch import nn\n",
|
| 389 |
+
"from transformers import RobertaModel\n",
|
| 390 |
+
"\n",
|
| 391 |
+
"from faknow.model.layers.layer import TextCNNLayer\n",
|
| 392 |
+
"from faknow.model.model import AbstractModel\n",
|
| 393 |
+
"from faknow.data.process.text_process import TokenizerFromPreTrained\n",
|
| 394 |
+
"import pandas as pd\n",
|
| 395 |
+
"import gdown\n",
|
| 396 |
+
"import os\n",
|
| 397 |
+
"\n",
|
| 398 |
+
"class _MLP(nn.Module):\n",
|
| 399 |
+
" def __init__(self,\n",
|
| 400 |
+
" input_dim: int,\n",
|
| 401 |
+
" embed_dims: List[int],\n",
|
| 402 |
+
" dropout_rate: float,\n",
|
| 403 |
+
" output_layer=True):\n",
|
| 404 |
+
" super().__init__()\n",
|
| 405 |
+
" layers = list()\n",
|
| 406 |
+
" for embed_dim in embed_dims:\n",
|
| 407 |
+
" layers.append(nn.Linear(input_dim, embed_dim))\n",
|
| 408 |
+
" layers.append(nn.BatchNorm1d(embed_dim))\n",
|
| 409 |
+
" layers.append(nn.ReLU())\n",
|
| 410 |
+
" layers.append(nn.Dropout(p=dropout_rate))\n",
|
| 411 |
+
" input_dim = embed_dim\n",
|
| 412 |
+
" if output_layer:\n",
|
| 413 |
+
" layers.append(torch.nn.Linear(input_dim, 1))\n",
|
| 414 |
+
" self.mlp = torch.nn.Sequential(*layers)\n",
|
| 415 |
+
"\n",
|
| 416 |
+
" def forward(self, x: Tensor) -> Tensor:\n",
|
| 417 |
+
" \"\"\"\n",
|
| 418 |
+
"\n",
|
| 419 |
+
" Args:\n",
|
| 420 |
+
" x (Tensor): shared feature from domain and text, shape=(batch_size, embed_dim)\n",
|
| 421 |
+
"\n",
|
| 422 |
+
" \"\"\"\n",
|
| 423 |
+
" return self.mlp(x)\n",
|
| 424 |
+
"\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"class _MaskAttentionLayer(torch.nn.Module):\n",
|
| 427 |
+
" \"\"\"\n",
|
| 428 |
+
" Compute attention layer\n",
|
| 429 |
+
" \"\"\"\n",
|
| 430 |
+
" def __init__(self, input_size: int):\n",
|
| 431 |
+
" super(_MaskAttentionLayer, self).__init__()\n",
|
| 432 |
+
" self.attention_layer = torch.nn.Linear(input_size, 1)\n",
|
| 433 |
+
"\n",
|
| 434 |
+
" def forward(self,\n",
|
| 435 |
+
" inputs: Tensor,\n",
|
| 436 |
+
" mask: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:\n",
|
| 437 |
+
" weights = self.attention_layer(inputs).view(-1, inputs.size(1))\n",
|
| 438 |
+
" if mask is not None:\n",
|
| 439 |
+
" weights = weights.masked_fill(mask == 0, float(\"-inf\"))\n",
|
| 440 |
+
" weights = torch.softmax(weights, dim=-1).unsqueeze(1)\n",
|
| 441 |
+
" outputs = torch.matmul(weights, inputs).squeeze(1)\n",
|
| 442 |
+
" return outputs, weights\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"class MDFEND(AbstractModel):\n",
|
| 446 |
+
" r\"\"\"\n",
|
| 447 |
+
" MDFEND: Multi-domain Fake News Detection, CIKM 2021\n",
|
| 448 |
+
" paper: https://dl.acm.org/doi/10.1145/3459637.3482139\n",
|
| 449 |
+
" code: https://github.com/kennqiang/MDFEND-Weibo21\n",
|
| 450 |
+
" \"\"\"\n",
|
| 451 |
+
" def __init__(self,\n",
|
| 452 |
+
" pre_trained_bert_name: str,\n",
|
| 453 |
+
" domain_num: int,\n",
|
| 454 |
+
" mlp_dims: Optional[List[int]] = None,\n",
|
| 455 |
+
" dropout_rate=0.2,\n",
|
| 456 |
+
" expert_num=5):\n",
|
| 457 |
+
" \"\"\"\n",
|
| 458 |
+
"\n",
|
| 459 |
+
" Args:\n",
|
| 460 |
+
" pre_trained_bert_name (str): the name or local path of pre-trained bert model\n",
|
| 461 |
+
" domain_num (int): total number of all domains\n",
|
| 462 |
+
" mlp_dims (List[int]): a list of the dimensions in MLP layer, if None, [384] will be taken as default, default=384\n",
|
| 463 |
+
" dropout_rate (float): rate of Dropout layer, default=0.2\n",
|
| 464 |
+
" expert_num (int): number of experts also called TextCNNLayer, default=5\n",
|
| 465 |
+
" \"\"\"\n",
|
| 466 |
+
" super(MDFEND, self).__init__()\n",
|
| 467 |
+
" self.domain_num = domain_num\n",
|
| 468 |
+
" self.expert_num = expert_num\n",
|
| 469 |
+
" self.bert = RobertaModel.from_pretrained(\n",
|
| 470 |
+
" pre_trained_bert_name).requires_grad_(False)\n",
|
| 471 |
+
" self.embedding_size = self.bert.config.hidden_size\n",
|
| 472 |
+
" self.loss_func = nn.BCELoss()\n",
|
| 473 |
+
" if mlp_dims is None:\n",
|
| 474 |
+
" mlp_dims = [384]\n",
|
| 475 |
+
"\n",
|
| 476 |
+
" filter_num = 64\n",
|
| 477 |
+
" filter_sizes = [1, 2, 3, 5, 10]\n",
|
| 478 |
+
" experts = [\n",
|
| 479 |
+
" TextCNNLayer(self.embedding_size, filter_num, filter_sizes)\n",
|
| 480 |
+
" for _ in range(self.expert_num)\n",
|
| 481 |
+
" ]\n",
|
| 482 |
+
" self.experts = nn.ModuleList(experts)\n",
|
| 483 |
+
"\n",
|
| 484 |
+
" self.gate = nn.Sequential(\n",
|
| 485 |
+
" nn.Linear(self.embedding_size * 2, mlp_dims[-1]), nn.ReLU(),\n",
|
| 486 |
+
" nn.Linear(mlp_dims[-1], self.expert_num), nn.Softmax(dim=1))\n",
|
| 487 |
+
"\n",
|
| 488 |
+
" self.attention = _MaskAttentionLayer(self.embedding_size)\n",
|
| 489 |
+
"\n",
|
| 490 |
+
" self.domain_embedder = nn.Embedding(num_embeddings=self.domain_num,\n",
|
| 491 |
+
" embedding_dim=self.embedding_size)\n",
|
| 492 |
+
" self.classifier = _MLP(320, mlp_dims, dropout_rate)\n",
|
| 493 |
+
"\n",
|
| 494 |
+
" def forward(self, token_id: Tensor, mask: Tensor,\n",
|
| 495 |
+
" domain: Tensor) -> Tensor:\n",
|
| 496 |
+
" \"\"\"\n",
|
| 497 |
+
"\n",
|
| 498 |
+
" Args:\n",
|
| 499 |
+
" token_id (Tensor): token ids from bert tokenizer, shape=(batch_size, max_len)\n",
|
| 500 |
+
" mask (Tensor): mask from bert tokenizer, shape=(batch_size, max_len)\n",
|
| 501 |
+
" domain (Tensor): domain id, shape=(batch_size,)\n",
|
| 502 |
+
"\n",
|
| 503 |
+
" Returns:\n",
|
| 504 |
+
" FloatTensor: the prediction of being fake, shape=(batch_size,)\n",
|
| 505 |
+
" \"\"\"\n",
|
| 506 |
+
" text_embedding = self.bert(token_id,\n",
|
| 507 |
+
" attention_mask=mask).last_hidden_state\n",
|
| 508 |
+
" attention_feature, _ = self.attention(text_embedding, mask)\n",
|
| 509 |
+
"\n",
|
| 510 |
+
" domain_embedding = self.domain_embedder(domain.view(-1, 1)).squeeze(1)\n",
|
| 511 |
+
"\n",
|
| 512 |
+
" gate_input = torch.cat([domain_embedding, attention_feature], dim=-1)\n",
|
| 513 |
+
" gate_output = self.gate(gate_input)\n",
|
| 514 |
+
"\n",
|
| 515 |
+
" shared_feature = 0\n",
|
| 516 |
+
" for i in range(self.expert_num):\n",
|
| 517 |
+
" expert_feature = self.experts[i](text_embedding)\n",
|
| 518 |
+
" shared_feature += (expert_feature * gate_output[:, i].unsqueeze(1))\n",
|
| 519 |
+
"\n",
|
| 520 |
+
" label_pred = self.classifier(shared_feature)\n",
|
| 521 |
+
"\n",
|
| 522 |
+
" return torch.sigmoid(label_pred.squeeze(1))\n",
|
| 523 |
+
"\n",
|
| 524 |
+
" def calculate_loss(self, data) -> Tensor:\n",
|
| 525 |
+
" \"\"\"\n",
|
| 526 |
+
" calculate loss via BCELoss\n",
|
| 527 |
+
"\n",
|
| 528 |
+
" Args:\n",
|
| 529 |
+
" data (dict): batch data dict\n",
|
| 530 |
+
"\n",
|
| 531 |
+
" Returns:\n",
|
| 532 |
+
" loss (Tensor): loss value\n",
|
| 533 |
+
" \"\"\"\n",
|
| 534 |
+
"\n",
|
| 535 |
+
" token_ids = data['text']['token_id']\n",
|
| 536 |
+
" masks = data['text']['mask']\n",
|
| 537 |
+
" domains = data['domain']\n",
|
| 538 |
+
" labels = data['label']\n",
|
| 539 |
+
" output = self.forward(token_ids, masks, domains)\n",
|
| 540 |
+
" return self.loss_func(output, labels.float())\n",
|
| 541 |
+
"\n",
|
| 542 |
+
" def predict(self, data_without_label) -> Tensor:\n",
|
| 543 |
+
" \"\"\"\n",
|
| 544 |
+
" predict the probability of being fake news\n",
|
| 545 |
+
"\n",
|
| 546 |
+
" Args:\n",
|
| 547 |
+
" data_without_label (Dict[str, Any]): batch data dict\n",
|
| 548 |
+
"\n",
|
| 549 |
+
" Returns:\n",
|
| 550 |
+
" Tensor: one-hot probability, shape=(batch_size, 2)\n",
|
| 551 |
+
" \"\"\"\n",
|
| 552 |
+
"\n",
|
| 553 |
+
" token_ids = data_without_label['text']['token_id']\n",
|
| 554 |
+
" masks = data_without_label['text']['mask']\n",
|
| 555 |
+
" domains = data_without_label['domain']\n",
|
| 556 |
+
"\n",
|
| 557 |
+
" # shape=(n,), data = 1 or 0\n",
|
| 558 |
+
" round_pred = torch.round(self.forward(token_ids, masks,\n",
|
| 559 |
+
" domains)).long()\n",
|
| 560 |
+
" # after one hot: shape=(n,2), data = [0,1] or [1,0]\n",
|
| 561 |
+
" one_hot_pred = torch.nn.functional.one_hot(round_pred, num_classes=2)\n",
|
| 562 |
+
" return one_hot_pred\n",
|
| 563 |
+
"\n",
|
| 564 |
+
"\n",
|
| 565 |
+
"def download_from_gdrive(file_id, output_path):\n",
|
| 566 |
+
" output = os.path.join(output_path)\n",
|
| 567 |
+
"\n",
|
| 568 |
+
" # Check if the file already exists\n",
|
| 569 |
+
" if not os.path.exists(output):\n",
|
| 570 |
+
" gdown.download(id=file_id, output=output, quiet=False)\n",
|
| 571 |
+
"\n",
|
| 572 |
+
"\n",
|
| 573 |
+
" return output\n",
|
| 574 |
+
"\n",
|
| 575 |
+
"\n",
|
| 576 |
+
"\n",
|
| 577 |
+
"def loading_model_and_tokenizer():\n",
|
| 578 |
+
" max_len, bert = 160, 'FacebookAI/xlm-roberta-base'\n",
|
| 579 |
+
" #https://drive.google.com/file/d/1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC/view\n",
|
| 580 |
+
"\n",
|
| 581 |
+
" file_id = \"1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC\"\n",
|
| 582 |
+
"\n",
|
| 583 |
+
" model_path = '/content/drive/MyDrive/models/last-epoch-model-2024-03-17-01_00_32_1.pth'\n",
|
| 584 |
+
"\n",
|
| 585 |
+
" MODEL_SAVE_PATH = download_from_gdrive(file_id, model_path)\n",
|
| 586 |
+
" domain_num = 4\n",
|
| 587 |
+
"\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"\n",
|
| 590 |
+
" tokenizer = TokenizerFromPreTrained(max_len, bert)\n",
|
| 591 |
+
"\n",
|
| 592 |
+
" model = MDFEND(bert, domain_num , expert_num=12 , mlp_dims = [3010, 2024 ,1012 ,606 , 400])\n",
|
| 593 |
+
"\n",
|
| 594 |
+
" model.load_state_dict(torch.load(f=MODEL_SAVE_PATH , map_location=torch.device('cpu')))\n",
|
| 595 |
+
"\n",
|
| 596 |
+
" model.requires_grad_(False)\n",
|
| 597 |
+
"\n",
|
| 598 |
+
" return tokenizer , model"
|
| 599 |
+
],
|
| 600 |
+
"metadata": {
|
| 601 |
+
"id": "A4zYbG-AmxQd"
|
| 602 |
+
},
|
| 603 |
+
"execution_count": 51,
|
| 604 |
+
"outputs": []
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"cell_type": "code",
|
| 608 |
+
"source": [
|
| 609 |
+
"import pandas as pd\n",
|
| 610 |
+
"import torch\n",
|
| 611 |
+
"def preparing_data(text:str , domain: int):\n",
|
| 612 |
+
" \"\"\"\n",
|
| 613 |
+
"\n",
|
| 614 |
+
"\n",
|
| 615 |
+
"\n",
|
| 616 |
+
" Args:\n",
|
| 617 |
+
" text (_str_): input text from the user\n",
|
| 618 |
+
" domain (_int_): output domain from domain identification pipeline\n",
|
| 619 |
+
"\n",
|
| 620 |
+
" Returns:\n",
|
| 621 |
+
" _DataFrame_: dataframe contains texts and domain\n",
|
| 622 |
+
" \"\"\"\n",
|
| 623 |
+
" # Let's assume you have the following dictionary\n",
|
| 624 |
+
" # the model can't do inference with only one example so this dummy example must be put\n",
|
| 625 |
+
" dict_data = {\n",
|
| 626 |
+
" 'text': ['hello world' ] ,\n",
|
| 627 |
+
" 'domain': [0] ,\n",
|
| 628 |
+
" }\n",
|
| 629 |
+
"\n",
|
| 630 |
+
" dict_data[\"text\"].append(text)\n",
|
| 631 |
+
" dict_data[\"domain\"].append(domain)\n",
|
| 632 |
+
" # Convert the dictionary to a DataFrame\n",
|
| 633 |
+
" df = pd.DataFrame(dict_data)\n",
|
| 634 |
+
"\n",
|
| 635 |
+
" # return the dataframe\n",
|
| 636 |
+
" return df\n",
|
| 637 |
+
"\n",
|
| 638 |
+
"\n",
|
| 639 |
+
"def loading_data(tokenizer , df: pd.DataFrame ):\n",
|
| 640 |
+
" ids = []\n",
|
| 641 |
+
" masks = []\n",
|
| 642 |
+
" domain_list = []\n",
|
| 643 |
+
"\n",
|
| 644 |
+
" texts = df[\"text\"]\n",
|
| 645 |
+
" domains= df[\"domain\"]\n",
|
| 646 |
+
"\n",
|
| 647 |
+
"\n",
|
| 648 |
+
" for i in range(len(df)):\n",
|
| 649 |
+
" text = texts[i]\n",
|
| 650 |
+
" token = tokenizer(text)\n",
|
| 651 |
+
" ids.append(token[\"token_id\"])\n",
|
| 652 |
+
" masks.append(token[\"mask\"])\n",
|
| 653 |
+
" domain_list.append(domains[i])\n",
|
| 654 |
+
"\n",
|
| 655 |
+
" input_ids = torch.cat(ids , dim=0)\n",
|
| 656 |
+
" input_masks = torch.cat(masks ,dim = 0)\n",
|
| 657 |
+
" input_domains = torch.tensor(domain_list)\n",
|
| 658 |
+
"\n",
|
| 659 |
+
"\n",
|
| 660 |
+
" return input_ids , input_masks , input_domains"
|
| 661 |
+
],
|
| 662 |
+
"metadata": {
|
| 663 |
+
"id": "63oO220bidnk"
|
| 664 |
+
},
|
| 665 |
+
"execution_count": 31,
|
| 666 |
+
"outputs": []
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"cell_type": "code",
|
| 670 |
+
"source": [
|
| 671 |
+
"import torch\n",
|
| 672 |
+
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
|
| 673 |
+
"\n",
|
| 674 |
+
"def language_identification(texts):\n",
|
| 675 |
+
" text = [\n",
|
| 676 |
+
" texts,\n",
|
| 677 |
+
"\n",
|
| 678 |
+
" ]\n",
|
| 679 |
+
"\n",
|
| 680 |
+
" model_ckpt = \"papluca/xlm-roberta-base-language-detection\"\n",
|
| 681 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_ckpt)\n",
|
| 682 |
+
" model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)\n",
|
| 683 |
+
"\n",
|
| 684 |
+
" inputs = tokenizer(text, padding=True, truncation=True, return_tensors=\"pt\")\n",
|
| 685 |
+
"\n",
|
| 686 |
+
" with torch.no_grad():\n",
|
| 687 |
+
" logits = model(**inputs).logits\n",
|
| 688 |
+
"\n",
|
| 689 |
+
" preds = torch.softmax(logits, dim=-1)\n",
|
| 690 |
+
"\n",
|
| 691 |
+
" # Map raw predictions to languages\n",
|
| 692 |
+
" id2lang = model.config.id2label\n",
|
| 693 |
+
" vals, idxs = torch.max(preds, dim=1)\n",
|
| 694 |
+
" lang_dict = {id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}\n",
|
| 695 |
+
" return lang_dict"
|
| 696 |
+
],
|
| 697 |
+
"metadata": {
|
| 698 |
+
"id": "mBrwFI_wPxtU"
|
| 699 |
+
},
|
| 700 |
+
"execution_count": 32,
|
| 701 |
+
"outputs": []
|
| 702 |
+
},
|
| 703 |
+
{
|
| 704 |
+
"cell_type": "code",
|
| 705 |
+
"source": [
|
| 706 |
+
"from google.colab import drive\n",
|
| 707 |
+
"drive.mount('/content/drive')"
|
| 708 |
+
],
|
| 709 |
+
"metadata": {
|
| 710 |
+
"colab": {
|
| 711 |
+
"base_uri": "https://localhost:8080/"
|
| 712 |
+
},
|
| 713 |
+
"id": "yuFVY6cZidqI",
|
| 714 |
+
"outputId": "766ef226-ad9a-444c-eff8-d02923ff1b7d"
|
| 715 |
+
},
|
| 716 |
+
"execution_count": 33,
|
| 717 |
+
"outputs": [
|
| 718 |
+
{
|
| 719 |
+
"output_type": "stream",
|
| 720 |
+
"name": "stdout",
|
| 721 |
+
"text": [
|
| 722 |
+
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
|
| 723 |
+
]
|
| 724 |
+
}
|
| 725 |
+
]
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"cell_type": "code",
|
| 729 |
+
"source": [
|
| 730 |
+
"\n",
|
| 731 |
+
"def run_pipeline(input_text:str):\n",
|
| 732 |
+
"\n",
|
| 733 |
+
" language_dict = language_identification(input_text)\n",
|
| 734 |
+
" language_code = next(iter(language_dict))\n",
|
| 735 |
+
"\n",
|
| 736 |
+
" if language_code == \"en\":\n",
|
| 737 |
+
"\n",
|
| 738 |
+
" output_english = english_information_extraction(input_text)\n",
|
| 739 |
+
"\n",
|
| 740 |
+
" return output_english\n",
|
| 741 |
+
"\n",
|
| 742 |
+
" else:\n",
|
| 743 |
+
"\n",
|
| 744 |
+
"\n",
|
| 745 |
+
" num_results = 1\n",
|
| 746 |
+
" path = \"/content/drive/MyDrive/general_domains/vector_database\"\n",
|
| 747 |
+
" collection_name = \"general_domains\"\n",
|
| 748 |
+
"\n",
|
| 749 |
+
"\n",
|
| 750 |
+
" collection = get_collection_from_vector_db(path , collection_name)\n",
|
| 751 |
+
"\n",
|
| 752 |
+
" domain , label_domain , distance = retrieval(input_text , num_results , collection )\n",
|
| 753 |
+
"\n",
|
| 754 |
+
" if distance >1.45:\n",
|
| 755 |
+
" domain = \"undetermined\"\n",
|
| 756 |
+
"\n",
|
| 757 |
+
" tokenizer , model = loading_model_and_tokenizer()\n",
|
| 758 |
+
"\n",
|
| 759 |
+
" df = preparing_data(input_text , label_domain)\n",
|
| 760 |
+
"\n",
|
| 761 |
+
" input_ids , input_masks , input_domains = loading_data(tokenizer , df )\n",
|
| 762 |
+
"\n",
|
| 763 |
+
" labels = []\n",
|
| 764 |
+
" outputs = []\n",
|
| 765 |
+
" with torch.no_grad():\n",
|
| 766 |
+
"\n",
|
| 767 |
+
" pred = model.forward(input_ids, input_masks , input_domains)\n",
|
| 768 |
+
" labels.append([])\n",
|
| 769 |
+
"\n",
|
| 770 |
+
" for output in pred:\n",
|
| 771 |
+
" number = output.item()\n",
|
| 772 |
+
" label = int(1) if number >= 0.5 else int(0)\n",
|
| 773 |
+
" labels[-1].append(label)\n",
|
| 774 |
+
" outputs.append(pred)\n",
|
| 775 |
+
"\n",
|
| 776 |
+
" discrimination_class = [\"discriminative\" if i == int(1) else \"not discriminative\" for i in labels[0]]\n",
|
| 777 |
+
"\n",
|
| 778 |
+
"\n",
|
| 779 |
+
" return { \"domain_label\" :domain ,\n",
|
| 780 |
+
" \"domain_score\":distance ,\n",
|
| 781 |
+
" \"discrimination_label\" : discrimination_class[-1],\n",
|
| 782 |
+
" \"discrimination_score\" : outputs[0][1:].item(),\n",
|
| 783 |
+
" }\n",
|
| 784 |
+
"\n",
|
| 785 |
+
"\n",
|
| 786 |
+
"\n",
|
| 787 |
+
"\n",
|
| 788 |
+
"\n",
|
| 789 |
+
"\n",
|
| 790 |
+
"\n",
|
| 791 |
+
"\n",
|
| 792 |
+
"\n",
|
| 793 |
+
"\n",
|
| 794 |
+
"\n",
|
| 795 |
+
"\n",
|
| 796 |
+
"\n",
|
| 797 |
+
"\n"
|
| 798 |
+
],
|
| 799 |
+
"metadata": {
|
| 800 |
+
"id": "HlBJF4NQgAVy"
|
| 801 |
+
},
|
| 802 |
+
"execution_count": 34,
|
| 803 |
+
"outputs": []
|
| 804 |
+
},
|
| 805 |
+
{
|
| 806 |
+
"cell_type": "code",
|
| 807 |
+
"source": [
|
| 808 |
+
"input_text_1 = input(\"input text:\")\n",
|
| 809 |
+
"\n",
|
| 810 |
+
"output_1 = run_pipeline( input_text_1)"
|
| 811 |
+
],
|
| 812 |
+
"metadata": {
|
| 813 |
+
"colab": {
|
| 814 |
+
"base_uri": "https://localhost:8080/"
|
| 815 |
+
},
|
| 816 |
+
"id": "1BVBXyRDnDg4",
|
| 817 |
+
"outputId": "de9a4f3e-4ad4-4d03-8d51-b3df05daa685"
|
| 818 |
+
},
|
| 819 |
+
"execution_count": 35,
|
| 820 |
+
"outputs": [
|
| 821 |
+
{
|
| 822 |
+
"name": "stdout",
|
| 823 |
+
"output_type": "stream",
|
| 824 |
+
"text": [
|
| 825 |
+
"input text:muslims loves their prophet muhammed\n"
|
| 826 |
+
]
|
| 827 |
+
}
|
| 828 |
+
]
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"cell_type": "code",
|
| 832 |
+
"source": [
|
| 833 |
+
"output_1"
|
| 834 |
+
],
|
| 835 |
+
"metadata": {
|
| 836 |
+
"colab": {
|
| 837 |
+
"base_uri": "https://localhost:8080/"
|
| 838 |
+
},
|
| 839 |
+
"id": "TnnB40tEnIHI",
|
| 840 |
+
"outputId": "752bc3bd-93ac-46be-9d1a-308c6fc267ed"
|
| 841 |
+
},
|
| 842 |
+
"execution_count": 36,
|
| 843 |
+
"outputs": [
|
| 844 |
+
{
|
| 845 |
+
"output_type": "execute_result",
|
| 846 |
+
"data": {
|
| 847 |
+
"text/plain": [
|
| 848 |
+
"{'domain_label': 'muslims',\n",
|
| 849 |
+
" 'domain_score': 0.9989225268363953,\n",
|
| 850 |
+
" 'sentiment_label': 'positive',\n",
|
| 851 |
+
" 'sentiment_score': 0.9239600300788879,\n",
|
| 852 |
+
" 'discrimination_label': 'not hateful',\n",
|
| 853 |
+
" 'discrimination_score': 0.9917498826980591}"
|
| 854 |
+
]
|
| 855 |
+
},
|
| 856 |
+
"metadata": {},
|
| 857 |
+
"execution_count": 36
|
| 858 |
+
}
|
| 859 |
+
]
|
| 860 |
+
},
|
| 861 |
+
{
|
| 862 |
+
"cell_type": "code",
|
| 863 |
+
"source": [
|
| 864 |
+
"input_text_2 = input(\"input text:\")\n",
|
| 865 |
+
"\n",
|
| 866 |
+
"output_2 = run_pipeline( input_text_2)"
|
| 867 |
+
],
|
| 868 |
+
"metadata": {
|
| 869 |
+
"id": "LBAvmrE1QxM3",
|
| 870 |
+
"colab": {
|
| 871 |
+
"base_uri": "https://localhost:8080/"
|
| 872 |
+
},
|
| 873 |
+
"outputId": "45056e2c-701c-40c0-9a04-36710cc1bdbd"
|
| 874 |
+
},
|
| 875 |
+
"execution_count": 54,
|
| 876 |
+
"outputs": [
|
| 877 |
+
{
|
| 878 |
+
"name": "stdout",
|
| 879 |
+
"output_type": "stream",
|
| 880 |
+
"text": [
|
| 881 |
+
"input text:මුස්ලිම්වරු ඔවුන්ගේ අනාගතවක්තෘ මුහම්මද්ට ආදරෙයි\n"
|
| 882 |
+
]
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"output_type": "stream",
|
| 886 |
+
"name": "stderr",
|
| 887 |
+
"text": [
|
| 888 |
+
"Downloading...\n",
|
| 889 |
+
"From (original): https://drive.google.com/uc?id=1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC\n",
|
| 890 |
+
"From (redirected): https://drive.google.com/uc?id=1--6GB3Ff81sILwtuvVTuAW3shGW_5VWC&confirm=t&uuid=4bc00ac8-29e3-458b-a64d-c0f583a18df7\n",
|
| 891 |
+
"To: /content/drive/MyDrive/models/last-epoch-model-2024-03-17-01_00_32_1.pth\n",
|
| 892 |
+
"100%|██████████| 1.20G/1.20G [00:17<00:00, 69.1MB/s]\n",
|
| 893 |
+
"You are using a model of type xlm-roberta to instantiate a model of type roberta. This is not supported for all configurations of models and can yield errors.\n"
|
| 894 |
+
]
|
| 895 |
+
}
|
| 896 |
+
]
|
| 897 |
+
},
|
| 898 |
+
{
|
| 899 |
+
"cell_type": "code",
|
| 900 |
+
"source": [
|
| 901 |
+
"output_2"
|
| 902 |
+
],
|
| 903 |
+
"metadata": {
|
| 904 |
+
"colab": {
|
| 905 |
+
"base_uri": "https://localhost:8080/"
|
| 906 |
+
},
|
| 907 |
+
"id": "ienC5lZvYjcu",
|
| 908 |
+
"outputId": "25eb47ee-f219-4ce0-915b-5fd3acb54414"
|
| 909 |
+
},
|
| 910 |
+
"execution_count": 55,
|
| 911 |
+
"outputs": [
|
| 912 |
+
{
|
| 913 |
+
"output_type": "execute_result",
|
| 914 |
+
"data": {
|
| 915 |
+
"text/plain": [
|
| 916 |
+
"{'domain_label': 'muslims',\n",
|
| 917 |
+
" 'domain_score': 0.9477148933517974,\n",
|
| 918 |
+
" 'discrimination_label': 'not discriminative',\n",
|
| 919 |
+
" 'discrimination_score': 0.016480498015880585}"
|
| 920 |
+
]
|
| 921 |
+
},
|
| 922 |
+
"metadata": {},
|
| 923 |
+
"execution_count": 55
|
| 924 |
+
}
|
| 925 |
+
]
|
| 926 |
+
},
|
| 927 |
+
{
|
| 928 |
+
"cell_type": "code",
|
| 929 |
+
"source": [
|
| 930 |
+
"input_text_3 = input(\"input text:\")\n",
|
| 931 |
+
"\n",
|
| 932 |
+
"output_3 = run_pipeline( input_text_3)"
|
| 933 |
+
],
|
| 934 |
+
"metadata": {
|
| 935 |
+
"colab": {
|
| 936 |
+
"base_uri": "https://localhost:8080/"
|
| 937 |
+
},
|
| 938 |
+
"id": "kCe3FS5lYyQ7",
|
| 939 |
+
"outputId": "5ec7d2fd-3aa9-4e35-b4bf-2d1db4777aba"
|
| 940 |
+
},
|
| 941 |
+
"execution_count": 56,
|
| 942 |
+
"outputs": [
|
| 943 |
+
{
|
| 944 |
+
"name": "stdout",
|
| 945 |
+
"output_type": "stream",
|
| 946 |
+
"text": [
|
| 947 |
+
"input text:முஸ்லீம்கள் தங்கள் தீர்க்கதரிசியை நேசிக்கிறார்கள்\n"
|
| 948 |
+
]
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"output_type": "stream",
|
| 952 |
+
"name": "stderr",
|
| 953 |
+
"text": [
|
| 954 |
+
"You are using a model of type xlm-roberta to instantiate a model of type roberta. This is not supported for all configurations of models and can yield errors.\n"
|
| 955 |
+
]
|
| 956 |
+
}
|
| 957 |
+
]
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"cell_type": "code",
|
| 961 |
+
"source": [
|
| 962 |
+
"output_3"
|
| 963 |
+
],
|
| 964 |
+
"metadata": {
|
| 965 |
+
"colab": {
|
| 966 |
+
"base_uri": "https://localhost:8080/"
|
| 967 |
+
},
|
| 968 |
+
"id": "4gCBAROLaDNK",
|
| 969 |
+
"outputId": "dd50be33-030c-4ea4-d2ca-5cd513eb3f0b"
|
| 970 |
+
},
|
| 971 |
+
"execution_count": 57,
|
| 972 |
+
"outputs": [
|
| 973 |
+
{
|
| 974 |
+
"output_type": "execute_result",
|
| 975 |
+
"data": {
|
| 976 |
+
"text/plain": [
|
| 977 |
+
"{'domain_label': 'muslims',\n",
|
| 978 |
+
" 'domain_score': 0.9295339941122466,\n",
|
| 979 |
+
" 'discrimination_label': 'not discriminative',\n",
|
| 980 |
+
" 'discrimination_score': 0.011930261738598347}"
|
| 981 |
+
]
|
| 982 |
+
},
|
| 983 |
+
"metadata": {},
|
| 984 |
+
"execution_count": 57
|
| 985 |
+
}
|
| 986 |
+
]
|
| 987 |
+
}
|
| 988 |
+
]
|
| 989 |
+
}
|