File size: 12,528 Bytes
e68ea89
 
 
 
 
 
 
 
 
 
e69ee5c
 
e68ea89
 
 
 
 
 
 
c6fb8d7
84f9040
e68ea89
 
 
806d130
 
e68ea89
806d130
e68ea89
 
 
 
 
 
 
 
9fa792a
e68ea89
9fa792a
e68ea89
 
 
 
e69ee5c
e68ea89
 
 
e69ee5c
 
e68ea89
 
 
e69ee5c
 
 
 
 
 
 
 
e68ea89
e69ee5c
e68ea89
 
 
f8c6eb6
e68ea89
 
f8c6eb6
c5da24c
e69ee5c
 
 
 
 
 
 
 
e68ea89
 
 
 
 
 
 
 
 
 
 
 
9fa792a
 
 
e68ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa792a
e68ea89
 
9fa792a
e68ea89
 
 
 
 
 
e69ee5c
e68ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b162204
e68ea89
 
 
 
9fa792a
e68ea89
 
 
 
9fa792a
 
 
e69ee5c
 
 
 
e68ea89
 
 
 
 
 
 
9fa792a
 
 
e69ee5c
e68ea89
 
 
 
 
 
 
 
 
 
 
 
9fa792a
 
 
e68ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa792a
e68ea89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa792a
e68ea89
 
 
 
 
 
 
 
 
 
 
a8042e8
 
e68ea89
 
 
a8042e8
e68ea89
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import random
import json
import os
import httpx
from gradio_client import Client
from urllib.parse import urljoin
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
from huggingface_hub import login
import asyncio
from concurrent.futures import ThreadPoolExecutor


BOOK_MAPPING = {
    "Spaceman on a Spree": "In the context of \"Spaceman on a Spree\", written by Mack Reynolds in 1961,",
    "Charity Case": "In the context of \"Charity Case\", written by Jim Harmon in 1972,",
    "A Gift from Earth": "In the context of \"A Gift From Earth\", written by Manly Banister in 1950,",
    "Pick a Crime": "In the context of \"Pick a Crime\", written by Richard Rein Smith in 1970,",
    "Dangerous Quarry": "In the context of \"Dangerous Quarry\", written by Jim Harmon in 1972,",
    "Lost in Translation": "In the context of \"Lost in Translation\", written by Larry M. Harris in 1972,"
}

CATEGORY_MAPPING = {
    "Identity": "identity",
    "Motivation": "motivation",
    "Relationship": "relationship",
    "Event": "event",
}

MODEL_VARIANTS = ["rephrase", "rephrase_summarize", "entigraph"]

model_responses = {"Model_A": "", "Model_B": "", "Model_C": ""}


class ModelManager:
    def __init__(self, books):
        self.book_model_assignments = {}
        self.assign_models_to_books(books)
        self.model_A = Client("mep296/llama-3-8b-rephrase-quality")
        self.model_B = Client("mep296/llama-3-8b-rephrase-summarize-quality")
        self.model_C = Client("mep296/llama-3-8b-entigraph-quality")
        self.template_text = self._load_template()

    def _load_template(self):
        with open("prompt_template.txt", "r", encoding="utf-8") as file:
            return file.read()

    async def get_model_response_async(self, model_name, client, prompt):
        try:
            formatted_prompt = self.template_text.format(prompt)
            
            loop = asyncio.get_running_loop()
            with ThreadPoolExecutor() as executor:
                response = await loop.run_in_executor(
                    executor, 
                    client.predict, 
                    formatted_prompt, 
                    "/predict"
                )
            
            model_responses[model_name] = response
            return response
        except (httpx.ReadTimeout, httpx.ConnectTimeout) as e:
            print(f"Timeout while getting response from {model_name}: {str(e)}")
            return f"⚠️ Model {model_name} is waking up... This may take a few minutes. Please wait and try again shortly. ⏳"
        except Exception as e:
            print(f"Error getting response from {model_name}: {str(e)}")
            return f"Error: Could not get response from {model_name}. Please try again in a few minutes."

    async def get_all_model_responses_async(self, prompt):
        tasks = [
            self.get_model_response_async("Model_A", self.model_A, prompt),
            self.get_model_response_async("Model_B", self.model_B, prompt),
            self.get_model_response_async("Model_C", self.model_C, prompt)
        ]
        
        responses = await asyncio.gather(*tasks)
        return responses

    def get_book_model_mapping(self, book):
        if book not in self.book_model_assignments:
            shuffled_models = random.sample(MODEL_VARIANTS, len(MODEL_VARIANTS))
            self.book_model_assignments[book] = {
                "Model A": shuffled_models[0],
                "Model B": shuffled_models[1],
                "Model C": shuffled_models[2]
            }
        return self.book_model_assignments[book]

    def assign_models_to_books(self, books):
        for book in books:
            self.get_book_model_mapping(book)

class SheetManager:
    def __init__(self):
        scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
        creds = ServiceAccountCredentials.from_json_keyfile_dict(variables_keys, scope)
        client = gspread.authorize(creds)
        self.sheet = client.open("Model Blind Comparison Ratings").sheet1
        
    def append_rating(self, rating_data):
        self.sheet.append_row([
            rating_data["book"],
            rating_data["category"],
            rating_data["prompt"],
            rating_data["rephrase_rating"],
            rating_data["rephrase_summarize_rating"],
            rating_data["entigraph_rating"],
            rating_data["rephrase_response"],
            rating_data["rephrase_summarize_response"],
            rating_data["entigraph_response"],
        ])


class ModelComparisonApp:
    def __init__(self):
        self.model_manager = ModelManager(BOOK_MAPPING.keys())
        self.sheet_manager = SheetManager()
        self.votes = []
        self.selected_book = "Spaceman on a Spree"
        self.selected_book_string = BOOK_MAPPING["Spaceman on a Spree"]
        self.selected_category_string = ""
        self.chat_history_A = []
        self.chat_history_B = []
        self.chat_history_C = []
        self.state = gr.State(value="")
        self.loop = asyncio.get_event_loop()
        
    def create_interface(self):
        text_size = gr.themes.sizes.text_lg
        with gr.Blocks(theme=gr.themes.Default(text_size=text_size), fill_width=True) as demo:
            gr.Markdown("# Model Blind Comparison")
            
            with gr.Group():
                with gr.Row():
                    chat_interfaces = self._create_chat_interfaces()
                    
            with gr.Row():
                ratings = self._create_rating_sliders()
                
            with gr.Row(equal_height=True):
                submit_button = gr.Button(value="⭐ Submit Ratings", interactive=False)
                submission_status = gr.Textbox(label="Submission Status", interactive=False)
                
            with gr.Row(equal_height=True):
                input_elements = self._create_input_elements()
                
            self._setup_event_handlers(demo, chat_interfaces, ratings, submit_button, submission_status, input_elements)
            
        return demo
    
    def _create_chat_interfaces(self):
        interfaces = {}
        for model in ['A', 'B', 'C']:
            interfaces[model] = gr.Chatbot(
                getattr(self, f'chat_history_{model}'),
                type="messages",
                label=f"Model {model}",
                height=650,
                show_copy_button=True
            )
        return interfaces
    
    def _create_rating_sliders(self):
        return {
            str(i): gr.Slider(1, 5, step=1, label=f"Rate Response {chr(64+i)}", 
                            interactive=True, value=3)
            for i in range(1, 4)
        }
    
    def _create_input_elements(self):
        return {
            'book': gr.Dropdown(choices=list(BOOK_MAPPING.keys()), 
                              label="Select a Book", interactive=True, scale=1),
            'category': gr.Dropdown(choices=list(CATEGORY_MAPPING.keys()),
                                  label="Select a Question Category", interactive=True, scale=1),
            'question': gr.Textbox(label="Type a Question", max_lines=1,
                                 placeholder="e.g. What is the relationship between Harry Potter and Sirius Black?",
                                 interactive=True, scale=2),
            'send': gr.Button("Send", scale=0, variant="primary", interactive=False)
        }
    
    def respond(self, message):
        if not message.strip():
            raise gr.Error("Message cannot be empty!")
            
        prompt = f"{self.selected_book_string} {message}"
        mapping_dict = self.model_manager.book_model_assignments[self.selected_book]
        model_order = ["rephrase", "rephrase_summarize", "entigraph"]
        model_to_index = {model: i for i, model in enumerate(model_order)}

        responses = self.loop.run_until_complete(
            self.model_manager.get_all_model_responses_async(prompt)
        )
        
        chats = []
        for response in responses:
            chat = []
            chat.append({"role": "user", "content": prompt})
            chat.append({"role": "assistant", "content": response})
            chats.append(chat)
        
        reordered_chats = [chats[model_to_index[mapping_dict[model]]] for model in ["Model A", "Model B", "Model C"]]
        return reordered_chats

    def get_votes(self, book, category, question, rating_A, rating_B, rating_C):
        model_mapping = self.model_manager.get_book_model_mapping(book)
        rating_data = {
            "book": book,
            "category": category,
            "prompt": question,
            "rephrase_rating": rating_A if model_mapping["Model A"] == "rephrase" else 
                       rating_B if model_mapping["Model B"] == "rephrase" else rating_C,
            "rephrase_summarize_rating": rating_A if model_mapping["Model A"] == "rephrase_summarize" else 
                                 rating_B if model_mapping["Model B"] == "rephrase_summarize" else rating_C,
            "entigraph_rating": rating_A if model_mapping["Model A"] == "entigraph" else 
                        rating_B if model_mapping["Model B"] == "entigraph" else rating_C,
            "rephrase_response": model_responses["Model_A"],
            "rephrase_summarize_response": model_responses["Model_B"],
            "entigraph_response": model_responses["Model_C"]
        }
        
        self.votes.append(rating_data)
        self.sheet_manager.append_rating(rating_data)
        return ("Ratings submitted successfully!", gr.update(interactive=False))
    
    def _setup_event_handlers(self, demo, chat_interfaces, ratings, submit_button, submission_status, input_elements):
        def enable_send_btn(book, category, question):
            return gr.update(interactive=bool(book and category and question))
        
        def enable_button_group(model_A, model_B, model_C):
            return gr.update(interactive=bool(model_A and model_B and model_C))
        
        def update_selected_book(book_selection):
            self.selected_book = book_selection
            self.selected_book_string = BOOK_MAPPING.get(book_selection, "")
            return self.selected_book_string
        
        for input_name in ['book', 'category', 'question']:
            input_elements[input_name].change(
                enable_send_btn,
                inputs=[input_elements['book'], input_elements['category'], input_elements['question']],
                outputs=[input_elements['send']]
            )
        
        input_elements['book'].change(
            update_selected_book,
            inputs=[input_elements['book']],
            outputs=[self.state]
        )
            
        submit_button.click(
            self.get_votes,
            inputs=[input_elements['book'], input_elements['category'], input_elements['question'],
                   ratings['1'], ratings['2'], ratings['3']],
            outputs=[submission_status, submit_button]
        )
        
        input_elements['send'].click(
            self.respond,
            inputs=[input_elements['question']],
            outputs=list(chat_interfaces.values())
        )
        
        for interface in chat_interfaces.values():
            interface.change(
                enable_button_group,
                inputs=list(chat_interfaces.values()),
                outputs=[submit_button]
            )

if __name__ == "__main__":
    PRIVATE_KEY = os.environ.get('PRIVATE_KEY').replace('\\n', '\n')
    PRIVATE_KEY_ID = os.environ.get('PRIVATE_KEY_ID').replace('\\n', '\n')
    variables_keys = {
        "type": "service_account",
        "project_id": "summer-presence-450117-r7",
        "private_key_id": PRIVATE_KEY_ID,
        "private_key": PRIVATE_KEY,
        "client_email": "model-blind-comparison@summer-presence-450117-r7.iam.gserviceaccount.com",
        "client_id": "117681363507032419648",
        "auth_uri": "https://accounts.google.com/o/oauth2/auth",
        "token_uri": "https://oauth2.googleapis.com/token",
        "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
        "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/model-blind-comparison%40summer-presence-450117-r7.iam.gserviceaccount.com",
        "universe_domain": "googleapis.com"
    }
    app = ModelComparisonApp()
    demo = app.create_interface()
    demo.launch()