|
import tempfile |
|
import time |
|
import os |
|
from utils import compute_sha1_from_file |
|
from langchain.schema import Document |
|
import streamlit as st |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from stats import add_usage |
|
|
|
def process_file(vector_store, file, loader_class, file_suffix, stats_db=None): |
|
documents = [] |
|
file_name = file.name |
|
file_size = file.size |
|
if st.secrets.self_hosted == "false": |
|
if file_size > 1000000: |
|
st.error("File size is too large. Please upload a file smaller than 1MB or self host.") |
|
return |
|
|
|
dateshort = time.strftime("%Y%m%d") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file: |
|
tmp_file.write(file.getvalue()) |
|
tmp_file.flush() |
|
|
|
loader = loader_class(tmp_file.name) |
|
documents = loader.load() |
|
file_sha1 = compute_sha1_from_file(tmp_file.name) |
|
|
|
os.remove(tmp_file.name) |
|
|
|
chunk_size = st.session_state['chunk_size'] |
|
chunk_overlap = st.session_state['chunk_overlap'] |
|
|
|
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
|
|
documents = text_splitter.split_documents(documents) |
|
|
|
|
|
docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name, |
|
"chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort, |
|
"user" : st.session_state["username"]}) |
|
for doc in documents] |
|
|
|
vector_store.add_documents(docs_with_metadata) |
|
if stats_db: |
|
add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix, |
|
"chunk_size": chunk_size, "chunk_overlap": chunk_overlap}) |
|
|