import tempfile import time import os from utils import compute_sha1_from_file from langchain.schema import Document import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from stats import add_usage def process_file(vector_store, file, loader_class, file_suffix, stats_db=None): documents = [] file_name = file.name file_size = file.size if st.secrets.self_hosted == "false": if file_size > 1000000: st.error("File size is too large. Please upload a file smaller than 1MB or self host.") return dateshort = time.strftime("%Y%m%d") with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file: tmp_file.write(file.getvalue()) tmp_file.flush() loader = loader_class(tmp_file.name) documents = loader.load() file_sha1 = compute_sha1_from_file(tmp_file.name) os.remove(tmp_file.name) chunk_size = st.session_state['chunk_size'] chunk_overlap = st.session_state['chunk_overlap'] text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) documents = text_splitter.split_documents(documents) # Add the document sha1 as metadata to each document docs_with_metadata = [Document(page_content=doc.page_content, metadata={"file_sha1": file_sha1,"file_size":file_size ,"file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort, "user" : st.session_state["username"]}) for doc in documents] vector_store.add_documents(docs_with_metadata) if stats_db: add_usage(stats_db, "embedding", "file", metadata={"file_name": file_name,"file_type": file_suffix, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap})