Asankhaya Sharma commited on
Commit
af7e3ad
·
1 Parent(s): 5666a5c
Files changed (1) hide show
  1. app.py +27 -25
app.py CHANGED
@@ -1,71 +1,73 @@
1
  import transformers
2
  import streamlit as st
3
 
4
- from transformers import AutoTokenizer, AutoModelWithLMHead
 
 
5
 
6
- tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
7
- @st.cache
8
  def load_model(model_name):
9
- model = AutoModelWithLMHead.from_pretrained("gpt2-large")
10
  return model
11
 
12
- model = load_model("gpt2-large")
13
 
14
- def infer(input_ids, max_length, temperature, top_k, top_p):
15
 
16
  output_sequences = model.generate(
17
  input_ids=input_ids,
18
- max_length=max_length,
19
  temperature=temperature,
20
  top_k=top_k,
21
  top_p=top_p,
22
  do_sample=True,
 
 
 
 
23
  num_return_sequences=1
24
  )
25
 
26
  return output_sequences
27
- default_value = "See how a modern neural network auto-completes your text 🤗 This site, built by the Hugging Face team, lets you write a whole document directly from your browser, and you can trigger the Transformer anywhere using the Tab key. Its like having a smart machine that completes your thoughts 😀 Get started by typing a custom snippet, check out the repository, or try one of the examples. Have fun!"
28
 
 
 
29
  #prompts
30
- st.title("Write with Transformers 🦄")
31
- st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
 
 
32
 
33
- sent = st.text_area("Text", default_value, height = 275)
34
- max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30)
35
- temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
36
- top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
37
  top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
38
 
39
- encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt")
40
  if encoded_prompt.size()[-1] == 0:
41
  input_ids = None
42
  else:
43
  input_ids = encoded_prompt
44
 
45
-
46
- output_sequences = infer(input_ids, max_length, temperature, top_k, top_p)
47
-
48
-
49
 
50
  for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
51
  print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
52
  generated_sequences = generated_sequence.tolist()
53
 
54
  # Decode text
55
- text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
56
 
57
  # Remove all text after the stop token
58
  #text = text[: text.find(args.stop_token) if args.stop_token else None]
59
 
60
  # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
61
  total_sequence = (
62
- sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
63
  )
64
 
65
  generated_sequences.append(total_sequence)
66
  print(total_sequence)
67
 
68
-
69
- st.write(generated_sequences[-1])
70
-
71
-
 
1
  import transformers
2
  import streamlit as st
3
 
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+
6
+ checkpoint = "gpt2-large"
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
9
+ @st.cache_resource
10
  def load_model(model_name):
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
12
  return model
13
 
14
+ model = load_model(checkpoint)
15
 
16
+ def infer(input_ids, max_tokens, temperature, top_k, top_p):
17
 
18
  output_sequences = model.generate(
19
  input_ids=input_ids,
20
+ max_new_tokens=max_tokens,
21
  temperature=temperature,
22
  top_k=top_k,
23
  top_p=top_p,
24
  do_sample=True,
25
+ no_repeat_ngram_size=2,
26
+ early_stopping=True,
27
+ num_beams=4,
28
+ pad_token_id=tokenizer.eos_token_id,
29
  num_return_sequences=1
30
  )
31
 
32
  return output_sequences
 
33
 
34
+ default_value = "We are building the world's first"
35
+
36
  #prompts
37
+ st.title("Write with vcGPT 🦄")
38
+ st.write("This is a LLM that was fine-tuned on a dataset of investment memos to help you generate your next pitch.")
39
+
40
+ sent = st.text_area("Text", default_value, height = 400)
41
 
42
+ max_tokens = st.sidebar.slider("Max Tokens", min_value = 32, max_value=512)
43
+ temperature = st.sidebar.slider("Temperature", value = 0.8, min_value = 0.0, max_value=1.0, step=0.05)
44
+ top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 4)
 
45
  top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
46
 
47
+ encoded_prompt = tokenizer.encode(tokenizer.eos_token+sent, add_special_tokens=False, return_tensors="pt")
48
  if encoded_prompt.size()[-1] == 0:
49
  input_ids = None
50
  else:
51
  input_ids = encoded_prompt
52
 
53
+ output_sequences = infer(input_ids, max_tokens, temperature, top_k, top_p)
 
 
 
54
 
55
  for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
56
  print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
57
  generated_sequences = generated_sequence.tolist()
58
 
59
  # Decode text
60
+ text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True)
61
 
62
  # Remove all text after the stop token
63
  #text = text[: text.find(args.stop_token) if args.stop_token else None]
64
 
65
  # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
66
  total_sequence = (
67
+ sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True, skip_special_tokens=True)) :]
68
  )
69
 
70
  generated_sequences.append(total_sequence)
71
  print(total_sequence)
72
 
73
+ st.write(generated_sequences[-1])