File size: 9,919 Bytes
44cbe88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb07d5b
 
 
 
 
 
44cbe88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#Import Library
from unstructured.partition.pdf import partition_pdf
from langchain_openai import ChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough,RunnableLambda

from langchain_postgres.vectorstores import PGVector
from database import COLLECTION_NAME, CONNECTION_STRING
from langchain_community.storage import RedisStore
from langchain.schema.document import Document
from langchain_openai import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from pathlib import Path
from IPython.display import display, HTML
from base64 import b64decode
import os, hashlib, shutil, uuid, json, time
import torch, redis, streamlit as st
import logging
import openai


# from dotenv import load_dotenv
# load_dotenv()

openai_api_key = os.getenv("OPENAI_API_KEY")

# Ensure PyTorch module path is correctly set
torch.classes.__path__ = [os.path.join(torch.__path__[0], torch.classes.__file__)] 

# Configure logging
logging.basicConfig(level=logging.INFO)

# Initialize Redis client
# client = redis.Redis(host="localhost", port=6379, db=0)

redis_host = os.getenv("REDIS_HOST", "redis-stack")
redis_port = int(os.getenv("REDIS_PORT", 6379))

client = redis.Redis(host=redis_host, port=redis_port, db=0)




#Data Loading
def load_pdf_data(file_path):
    logging.info(f"Data ready to be partitioned and loaded ")
    raw_pdf_elements = partition_pdf(
        filename=file_path,
      
        infer_table_structure=True,
        strategy = "hi_res",
        
        extract_image_block_types = ["Image"],
        extract_image_block_to_payload  = True,

        chunking_strategy="by_title",     
        mode='elements',
        max_characters=10000,
        new_after_n_chars=5000,
        combine_text_under_n_chars=2000,
        image_output_dir_path="data/",
    )
    logging.info(f"Pdf data finish loading, chunks now available!")
    return raw_pdf_elements

# Generate a unique hash for a PDF file
def get_pdf_hash(pdf_path):
    """Generate a SHA-256 hash of the PDF file content."""
    with open(pdf_path, "rb") as f:
        pdf_bytes = f.read()
    return hashlib.sha256(pdf_bytes).hexdigest()

# Summarize extracted text and tables using LLM
def summarize_text_and_tables(text, tables):
    logging.info("Ready to summarize data with LLM")
    prompt_text = """You are an assistant tasked with summarizing text and tables. \
    
                    You are to give a concise summary of the table or text and do nothing else. 
                    Table or text chunk: {element} """
    prompt = ChatPromptTemplate.from_template(prompt_text)
    model = ChatOpenAI(temperature=0.6, model="gpt-4o-mini", openai_api_key=openai_api_key)
    summarize_chain = {"element": RunnablePassthrough()}| prompt | model | StrOutputParser()
    logging.info(f"{model} done with summarization")
    return {
        "text": summarize_chain.batch(text, {"max_concurrency": 5}),
        "table": summarize_chain.batch(tables, {"max_concurrency": 5})
    }
  
#Initialize a pgvector and retriever for storing and searching documents
def initialize_retriever():

    store = RedisStore(client=client)
    id_key = "doc_id"
    vectorstore = PGVector(
            embeddings=OpenAIEmbeddings(),
            collection_name=COLLECTION_NAME,
            connection=CONNECTION_STRING,
            use_jsonb=True,
            )
    retrieval_loader = MultiVectorRetriever(vectorstore=vectorstore, docstore=store, id_key="doc_id")
    return retrieval_loader


# Store text, tables, and their summaries in the retriever

def store_docs_in_retriever(text, text_summary, table, table_summary, retriever):
    """Store text and table documents along with their summaries in the retriever."""

    def add_documents_to_retriever(documents, summaries, retriever, id_key = "doc_id"):
        """Helper function to add documents and their summaries to the retriever."""
        if not summaries:
            return None, []

        doc_ids = [str(uuid.uuid4()) for _ in documents]
        summary_docs = [
            Document(page_content=summary, metadata={id_key: doc_ids[i]})
            for i, summary in enumerate(summaries)
        ]

        retriever.vectorstore.add_documents(summary_docs, ids=doc_ids)
        retriever.docstore.mset(list(zip(doc_ids, documents)))     

# Add text, table, and image summaries to the retriever
    add_documents_to_retriever(text, text_summary, retriever)
    add_documents_to_retriever(table, table_summary, retriever)
    return retriever


# Parse the retriever output
def parse_retriver_output(data):
    parsed_elements = []
    for element in data:
        # Decode bytes to string if necessary
        if isinstance(element, bytes):
            element = element.decode("utf-8")
        
        parsed_elements.append(element)
    
    return parsed_elements


# Chat with the LLM using retrieved context

def chat_with_llm(retriever):

    logging.info(f"Context ready to send to LLM ")
    prompt_text = """
                You are an AI Assistant tasked with understanding detailed
                information from text and tables. You are to answer the question based on the 
                context provided to you. You must not go beyond the context given to you.
                
                Context:
                {context}

                Question:
                {question}
                """

    prompt = ChatPromptTemplate.from_template(prompt_text)
    model = ChatOpenAI(temperature=0.6, model="gpt-4o-mini", openai_api_key=openai_api_key)
 
    rag_chain = ({
       "context": retriever | RunnableLambda(parse_retriver_output), "question": RunnablePassthrough(),
        } 
        | prompt 
        | model 
        | StrOutputParser()
        )
        
    logging.info(f"Completed! ")

    return rag_chain

# Generate temporary file path of uploaded docs
def _get_file_path(file_upload):

    temp_dir = "temp"
    os.makedirs(temp_dir, exist_ok=True)  # Ensure the directory exists

    if isinstance(file_upload, str):
        file_path = file_upload  # Already a string path
    else:
        file_path = os.path.join(temp_dir, file_upload.name)
        with open(file_path, "wb") as f:
            f.write(file_upload.getbuffer())
        return file_path
    

# Process uploaded PDF file
def process_pdf(file_upload):
    print('Processing PDF hash info...')
    
    file_path =  _get_file_path(file_upload)
    pdf_hash = get_pdf_hash(file_path)

    load_retriever = initialize_retriever()
    existing = client.exists(f"pdf:{pdf_hash}")
    print(f"Checking Redis for hash {pdf_hash}: {'Exists' if existing else 'Not found'}")

    if existing:
        print(f"PDF already exists with hash {pdf_hash}. Skipping upload.")
        return load_retriever

    print(f"New PDF detected. Processing... {pdf_hash}")
 
    pdf_elements = load_pdf_data(file_path)
    
    tables = [element.metadata.text_as_html for element in
               pdf_elements if 'Table' in str(type(element))]
    
    text = [element.text for element in pdf_elements if 
            'CompositeElement' in str(type(element))]
   
    summaries = summarize_text_and_tables(text, tables)
    retriever = store_docs_in_retriever(text, summaries['text'], tables,  summaries['table'], load_retriever)
    
    # Store the PDF hash in Redis
    client.set(f"pdf:{pdf_hash}", json.dumps({"text": "PDF processed"}))  

    # Debug: Check if Redis stored the key
    stored = client.exists(f"pdf:{pdf_hash}")
    # #remove temp directory
    # shutil.rmtree("dir")
    print(f"Stored PDF hash in Redis: {'Success' if stored else 'Failed'}")
    return retriever


#Invoke chat with LLM based on uploaded PDF and user query
def invoke_chat(file_upload, message):

    retriever =process_pdf(file_upload)
    rag_chain = chat_with_llm(retriever)
    response = rag_chain.invoke(message)
    response_placeholder = st.empty()
    response_placeholder.write(response)
    return response


# Main application interface using Streamlit
def main():
  
    st.title("PDF Chat Assistant ")
    logging.info("App started")

    if 'messages' not in st.session_state:
        st.session_state.messages = []

 
    file_upload = st.sidebar.file_uploader(
    label="Upload", type=["pdf"], 
    accept_multiple_files=False,
    key="pdf_uploader"
    )

    if file_upload:     
        st.success("File uploaded successfully! You can now ask your question.")

    # Prompt for user input
    if prompt := st.chat_input("Your question"):
        st.session_state.messages.append({"role": "user", "content": prompt})

    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # Generate response if last message is not from assistant
    if st.session_state.messages and st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            start_time = time.time()
            logging.info("Generating response...")
            with st.spinner("Processing..."):
                user_message = " ".join([msg["content"] for msg in st.session_state.messages if msg])           
                response_message = invoke_chat(file_upload, user_message)
        
                duration = time.time() - start_time
                response_msg_with_duration = f"{response_message}\n\nDuration: {duration:.2f} seconds"

                st.session_state.messages.append({"role": "assistant", "content": response_msg_with_duration})
                st.write(f"Duration: {duration:.2f} seconds")
                logging.info(f"Response: {response_message}, Duration: {duration:.2f} s")


    



if __name__ == "__main__":
    main()