Mastouri
Update Gradio app to integrate model and dataset
5cfe83b
raw
history blame
1.09 kB
import gradio as gr
from joblib import load
# Load the model and preprocessing artifacts
model = load("logistic_model.joblib")
tfidf_vectorizer = load("tfidf_vectorizer.joblib")
mlb = load("label_binarizer.joblib")
# Define a function to classify commit messages
def classify_commit(message):
# Preprocess the input message
X_tfidf = tfidf_vectorizer.transform([message])
# Predict the labels
prediction = model.predict(X_tfidf)
predicted_labels = mlb.inverse_transform(prediction)
# Return the predicted labels as a comma-separated string
return ", ".join(predicted_labels[0]) if predicted_labels[0] else "No labels"
# Create a Gradio interface
demo = gr.Interface(
fn=classify_commit, # Function to call
inputs=gr.Textbox(label="Enter Commit Message"), # Input: Textbox for commit message
outputs=gr.Textbox(label="Predicted Labels"), # Output: Textbox for predicted labels
title="Commit Message Classifier",
description="Enter a commit message to classify it into predefined categories."
)
# Launch the Gradio app
demo.launch()