Mastouri
commited on
Commit
·
f424ca3
1
Parent(s):
5cfe83b
Updated XGBoost model with TF-IDF vectorizer
Browse files- logistic_reg.py +69 -0
logistic_reg.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
+
from sklearn.preprocessing import MultiLabelBinarizer
|
6 |
+
from sklearn.metrics import hamming_loss, f1_score, classification_report
|
7 |
+
import xgboost as xgb
|
8 |
+
from joblib import dump, load
|
9 |
+
|
10 |
+
# Step 1: Load the Dataset Repository
|
11 |
+
dataset = load_dataset("meriemm6/commit-classification-dataset", data_files={"train": "training.csv", "validation": "validation.csv"})
|
12 |
+
|
13 |
+
# Convert the training and validation splits to pandas DataFrames
|
14 |
+
train_data = dataset["train"].to_pandas()
|
15 |
+
validation_data = dataset["validation"].to_pandas()
|
16 |
+
|
17 |
+
# Step 2: Clean and Process the Data
|
18 |
+
# Fill missing values in the 'Message' column with "unknown"
|
19 |
+
train_data['Message'] = train_data['Message'].fillna("unknown")
|
20 |
+
validation_data['Message'] = validation_data['Message'].fillna("unknown")
|
21 |
+
|
22 |
+
# Fill missing values in the 'Ground truth' column with "maintenance/other"
|
23 |
+
train_data['Ground truth'] = train_data['Ground truth'].fillna("maintenance/other")
|
24 |
+
validation_data['Ground truth'] = validation_data['Ground truth'].fillna("maintenance/other")
|
25 |
+
|
26 |
+
# Split the 'Ground truth' column into lists of labels
|
27 |
+
train_data['Ground truth'] = train_data['Ground truth'].apply(lambda x: x.split(', '))
|
28 |
+
validation_data['Ground truth'] = validation_data['Ground truth'].apply(lambda x: x.split(', '))
|
29 |
+
|
30 |
+
# Encode the labels
|
31 |
+
mlb = MultiLabelBinarizer()
|
32 |
+
y_train_encoded = mlb.fit_transform(train_data['Ground truth'])
|
33 |
+
y_val_encoded = mlb.transform(validation_data['Ground truth'])
|
34 |
+
|
35 |
+
# Step 3: TF-IDF Vectorization (Increased Features)
|
36 |
+
tfidf_vectorizer = TfidfVectorizer(max_features=10000, stop_words="english")
|
37 |
+
X_train_tfidf = tfidf_vectorizer.fit_transform(train_data['Message'])
|
38 |
+
X_val_tfidf = tfidf_vectorizer.transform(validation_data['Message'])
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Save the TF-IDF vectorizer
|
43 |
+
dump(tfidf_vectorizer, "tfidf_vectorizer_xgboost.joblib")
|
44 |
+
|
45 |
+
# Step 4: Add Class Weighting
|
46 |
+
label_counts = y_train_encoded.sum(axis=0)
|
47 |
+
scale_pos_weight = (len(y_train_encoded) - label_counts) / label_counts
|
48 |
+
|
49 |
+
# Step 5: Train XGBoost Models with Class Weighting and Dynamic Parameters
|
50 |
+
models = []
|
51 |
+
for i in range(y_train_encoded.shape[1]):
|
52 |
+
model = xgb.XGBClassifier(
|
53 |
+
objective="binary:logistic",
|
54 |
+
use_label_encoder=False,
|
55 |
+
eval_metric="logloss",
|
56 |
+
scale_pos_weight=scale_pos_weight[i], # Class weights
|
57 |
+
max_depth=6, # Reduced to prevent overfitting
|
58 |
+
learning_rate=0.03, # Lower learning rate for better generalization
|
59 |
+
n_estimators=300, # Increased estimators for better performance
|
60 |
+
subsample=0.8,
|
61 |
+
colsample_bytree=0.8,
|
62 |
+
min_child_weight=1 # Prevents overfitting on small datasets
|
63 |
+
)
|
64 |
+
model.fit(X_train_tfidf, y_train_encoded[:, i])
|
65 |
+
models.append(model)
|
66 |
+
|
67 |
+
# Save the models
|
68 |
+
for idx, model in enumerate(models):
|
69 |
+
dump(model, f"xgboost_model_label_{idx}.joblib")
|