import gradio as gr from joblib import load # Load the model and preprocessing artifacts model = load("logistic_model.joblib") tfidf_vectorizer = load("tfidf_vectorizer.joblib") mlb = load("label_binarizer.joblib") # Define a function to classify commit messages def classify_commit(message): # Preprocess the input message X_tfidf = tfidf_vectorizer.transform([message]) # Predict the labels prediction = model.predict(X_tfidf) predicted_labels = mlb.inverse_transform(prediction) # Return the predicted labels as a comma-separated string return ", ".join(predicted_labels[0]) if predicted_labels[0] else "No labels" # Create a Gradio interface demo = gr.Interface( fn=classify_commit, # Function to call inputs=gr.Textbox(label="Enter Commit Message"), # Input: Textbox for commit message outputs=gr.Textbox(label="Predicted Labels"), # Output: Textbox for predicted labels title="Commit Message Classifier", description="Enter a commit message to classify it into predefined categories." ) # Launch the Gradio app demo.launch()