File size: 20,393 Bytes
8a498c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import gradio as gr
import os
import PyPDF2
import logging
import torch
import threading
import time
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    StoppingCriteria,
    StoppingCriteriaList,
)
from transformers import logging as hf_logging
import spaces
from llama_index.core import (
    StorageContext,
    VectorStoreIndex,
    load_index_from_storage,
    Document as LlamaDocument,
)
from llama_index.core import Settings
from llama_index.core.node_parser import (
    HierarchicalNodeParser,
    get_leaf_nodes,
    get_root_nodes,
)
from llama_index.core.retrievers import AutoMergingRetriever
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from tqdm import tqdm

os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_logging.set_verbosity_error()

MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN not found in environment variables")

# Custom UI
TITLE = "<h1><center>Multi-Document RAG with LLama 3.1-8B Model</center></h1>"
DESCRIPTION = """
<center>
<p>Upload PDF or text files to get started!</p>
<p>After asking question wait for RAG system to get relevant nodes and passed to LLM</p>
</center>
"""
CSS = """
.upload-section {
    max-width: 400px;
    margin: 0 auto;
    padding: 10px;
    border: 2px dashed #ccc;
    border-radius: 10px;
}
.upload-button {
    background: #34c759 !important;
    color: white !important;
    border-radius: 25px !important;
}
.chatbot-container {
    margin-top: 20px;
}
.status-output {
    margin-top: 10px;
    font-size: 14px;
}
.processing-info {
    margin-top: 5px;
    font-size: 12px;
    color: #666;
}
.info-container {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
}
.file-list {
    margin-top: 0;
    max-height: 200px;
    overflow-y: auto;
    padding: 5px;
    border: 1px solid #eee;
    border-radius: 5px;
}
.stats-box {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
    font-size: 12px;
}
.submit-btn {
    background: #1a73e8 !important;
    color: white !important;
    border-radius: 25px !important;
    margin-left: 10px;
    padding: 5px 10px;
    font-size: 16px;
}
.input-row {
    display: flex;
    align-items: center;
}
@media (min-width: 768px) {
    .main-container {
        display: flex;
        justify-content: space-between;
        gap: 20px;
    }
    .upload-section {
        flex: 1;
        max-width: 300px;
    }
    .chatbot-container {
        flex: 2;
        margin-top: 0;
    }
}
"""

global_model = None
global_tokenizer = None
global_file_info = {}

def initialize_model_and_tokenizer():
    global global_model, global_tokenizer
    if global_model is None or global_tokenizer is None:
        logger.info("Initializing model and tokenizer...")
        global_tokenizer = AutoTokenizer.from_pretrained(MODEL, token=HF_TOKEN)
        global_model = AutoModelForCausalLM.from_pretrained(
            MODEL,
            device_map="auto",
            trust_remote_code=True,
            token=HF_TOKEN,
            torch_dtype=torch.float16
        )
        logger.info("Model and tokenizer initialized successfully")

def get_llm(temperature=0.7, max_new_tokens=256, top_p=0.95, top_k=50):
    global global_model, global_tokenizer
    if global_model is None or global_tokenizer is None:
        initialize_model_and_tokenizer()
    
    return HuggingFaceLLM(
        context_window=4096,
        max_new_tokens=max_new_tokens,
        tokenizer=global_tokenizer,
        model=global_model,
        generate_kwargs={
            "do_sample": True,
            "temperature": temperature,
            "top_k": top_k,
            "top_p": top_p
        }
    )

def extract_text_from_document(file):
    file_name = file.name
    file_extension = os.path.splitext(file_name)[1].lower()
    
    if file_extension == '.txt':
        text = file.read().decode('utf-8')
        return text, len(text.split()), None
    elif file_extension == '.pdf':
        pdf_reader = PyPDF2.PdfReader(file)
        text = "\n\n".join(page.extract_text() for page in pdf_reader.pages)
        return text, len(text.split()), None
    else:
        return None, 0, ValueError(f"Unsupported file format: {file_extension}")

@spaces.GPU()
def create_or_update_index(files, request: gr.Request):
    global global_file_info
    
    if not files:
        return "Please provide files.", ""
    
    start_time = time.time()
    user_id = request.session_hash
    save_dir = f"./{user_id}_index"
    # Initialize LlamaIndex modules
    llm = get_llm()
    embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
    Settings.llm = llm
    Settings.embed_model = embed_model
    file_stats = []
    new_documents = []
    
    for file in tqdm(files, desc="Processing files"):
        file_basename = os.path.basename(file.name)
        text, word_count, error = extract_text_from_document(file)
        if error:
            logger.error(f"Error processing file {file_basename}: {str(error)}")
            file_stats.append({
                "name": file_basename,
                "words": 0,
                "status": f"error: {str(error)}"
            })
            continue
        
        doc = LlamaDocument(
            text=text,
            metadata={
                "file_name": file_basename,
                "word_count": word_count,
                "source": "user_upload"
            }
        )
        new_documents.append(doc)
        
        file_stats.append({
            "name": file_basename,
            "words": word_count,
            "status": "processed"
        })
        
        global_file_info[file_basename] = {
            "word_count": word_count,
            "processed_at": time.time()
        }
    
    node_parser = HierarchicalNodeParser.from_defaults(
        chunk_sizes=[2048, 512, 128],  
        chunk_overlap=20         
    )
    logger.info(f"Parsing {len(new_documents)} documents into hierarchical nodes")
    new_nodes = node_parser.get_nodes_from_documents(new_documents)
    new_leaf_nodes = get_leaf_nodes(new_nodes)
    new_root_nodes = get_root_nodes(new_nodes)
    logger.info(f"Generated {len(new_nodes)} total nodes ({len(new_root_nodes)} root, {len(new_leaf_nodes)} leaf)")
    node_ancestry = {}
    for node in new_nodes:
        if hasattr(node, 'metadata') and 'file_name' in node.metadata:
            file_origin = node.metadata['file_name']
            if file_origin not in node_ancestry:
                node_ancestry[file_origin] = 0
            node_ancestry[file_origin] += 1
    
    if os.path.exists(save_dir):
        logger.info(f"Loading existing index from {save_dir}")
        storage_context = StorageContext.from_defaults(persist_dir=save_dir)
        index = load_index_from_storage(storage_context, settings=Settings)
        docstore = storage_context.docstore
        
        docstore.add_documents(new_nodes)
        for node in tqdm(new_leaf_nodes, desc="Adding leaf nodes to index"):
            index.insert_nodes([node])
            
        total_docs = len(docstore.docs)
        logger.info(f"Updated index with {len(new_nodes)} new nodes from {len(new_documents)} files")
    else:
        logger.info("Creating new index")
        docstore = SimpleDocumentStore()
        storage_context = StorageContext.from_defaults(docstore=docstore)
        docstore.add_documents(new_nodes)
        
        index = VectorStoreIndex(
            new_leaf_nodes, 
            storage_context=storage_context, 
            settings=Settings
        )
        total_docs = len(new_documents)
        logger.info(f"Created new index with {len(new_nodes)} nodes from {len(new_documents)} files")
    
    index.storage_context.persist(persist_dir=save_dir)
    # custom outputs after processing files
    file_list_html = "<div class='file-list'>"
    for stat in file_stats:
        status_color = "#4CAF50" if stat["status"] == "processed" else "#f44336"
        file_list_html += f"<div><span style='color:{status_color}'>●</span> {stat['name']} - {stat['words']} words</div>"
    file_list_html += "</div>"
    processing_time = time.time() - start_time
    stats_output = f"<div class='stats-box'>"
    stats_output += f"βœ“ Processed {len(files)} files in {processing_time:.2f} seconds<br>"
    stats_output += f"βœ“ Created {len(new_nodes)} nodes ({len(new_leaf_nodes)} leaf nodes)<br>"
    stats_output += f"βœ“ Total documents in index: {total_docs}<br>"
    stats_output += f"βœ“ Index saved to: {save_dir}<br>"
    stats_output += "</div>"
    output_container = f"<div class='info-container'>"
    output_container += file_list_html
    output_container += stats_output
    output_container += "</div>"
    return f"Successfully indexed {len(files)} files.", output_container

@spaces.GPU()
def stream_chat(
    message: str,
    history: list,
    system_prompt: str,
    temperature: float,
    max_new_tokens: int,
    top_p: float,
    top_k: int,
    penalty: float,
    retriever_k: int,
    merge_threshold: float,
    request: gr.Request
):
    if not request:
        yield history + [{"role": "assistant", "content": "Session initialization failed. Please refresh the page."}]
        return
    user_id = request.session_hash
    index_dir = f"./{user_id}_index"
    if not os.path.exists(index_dir):
        yield history + [{"role": "assistant", "content": "Please upload documents first."}]
        return

    max_new_tokens = int(max_new_tokens) if isinstance(max_new_tokens, (int, float)) else 1024
    temperature = float(temperature) if isinstance(temperature, (int, float)) else 0.9  
    top_p = float(top_p) if isinstance(top_p, (int, float)) else 0.95  
    top_k = int(top_k) if isinstance(top_k, (int, float)) else 50  
    penalty = float(penalty) if isinstance(penalty, (int, float)) else 1.2
    retriever_k = int(retriever_k) if isinstance(retriever_k, (int, float)) else 15
    merge_threshold = float(merge_threshold) if isinstance(merge_threshold, (int, float)) else 0.5
    llm = get_llm(temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k)
    embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL, token=HF_TOKEN)
    Settings.llm = llm
    Settings.embed_model = embed_model
    storage_context = StorageContext.from_defaults(persist_dir=index_dir)
    index = load_index_from_storage(storage_context, settings=Settings)
    base_retriever = index.as_retriever(similarity_top_k=retriever_k)
    auto_merging_retriever = AutoMergingRetriever(
        base_retriever,
        storage_context=storage_context,
        simple_ratio_thresh=merge_threshold, 
        verbose=True
    )
    logger.info(f"Query: {message}")
    retrieval_start = time.time()
    base_nodes = base_retriever.retrieve(message)
    logger.info(f"Retrieved {len(base_nodes)} base nodes in {time.time() - retrieval_start:.2f}s")
    base_file_sources = {}
    for node in base_nodes:
        if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
            file_name = node.node.metadata['file_name']
            if file_name not in base_file_sources:
                base_file_sources[file_name] = 0
            base_file_sources[file_name] += 1
    logger.info(f"Base retrieval file distribution: {base_file_sources}")
    merging_start = time.time()
    merged_nodes = auto_merging_retriever.retrieve(message)
    logger.info(f"Retrieved {len(merged_nodes)} merged nodes in {time.time() - merging_start:.2f}s")
    merged_file_sources = {}
    for node in merged_nodes:
        if hasattr(node.node, 'metadata') and 'file_name' in node.node.metadata:
            file_name = node.node.metadata['file_name']
            if file_name not in merged_file_sources:
                merged_file_sources[file_name] = 0
            merged_file_sources[file_name] += 1
    logger.info(f"Merged retrieval file distribution: {merged_file_sources}")
    context = "\n\n".join([n.node.text for n in merged_nodes])
    source_info = ""
    if merged_file_sources:
        source_info = "\n\nRetrieved information from files: " + ", ".join(merged_file_sources.keys())
    formatted_system_prompt = f"{system_prompt}\n\nDocument Context:\n{context}{source_info}"
    messages = [{"role": "system", "content": formatted_system_prompt}]
    for entry in history:
        messages.append(entry)
    messages.append({"role": "user", "content": message})
    prompt = global_tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    stop_event = threading.Event()
    class StopOnEvent(StoppingCriteria):
        def __init__(self, stop_event):
            super().__init__()
            self.stop_event = stop_event

        def __call__(self, input_ids, scores, **kwargs):
            return self.stop_event.is_set()
    stopping_criteria = StoppingCriteriaList([StopOnEvent(stop_event)])
    streamer = TextIteratorStreamer(
        global_tokenizer,
        skip_prompt=True,
        skip_special_tokens=True
    )
    inputs = global_tokenizer(prompt, return_tensors="pt").to(global_model.device)
    generation_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=penalty,
        do_sample=True,
        stopping_criteria=stopping_criteria
    )
    thread = threading.Thread(target=global_model.generate, kwargs=generation_kwargs)
    thread.start()
    updated_history = history + [
        {"role": "user", "content": message},
        {"role": "assistant", "content": ""}
    ]
    yield updated_history
    partial_response = ""
    try:
        for new_text in streamer:
            partial_response += new_text
            updated_history[-1]["content"] = partial_response
            yield updated_history
        output_ids = global_tokenizer.encode(partial_response, return_tensors="pt")
        yield updated_history
    except GeneratorExit:
        stop_event.set()
        thread.join()
        raise

def create_demo():
    with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
        gr.HTML(TITLE)
        gr.HTML(DESCRIPTION)
        
        with gr.Row(elem_classes="main-container"):
            with gr.Column(elem_classes="upload-section"):
                file_upload = gr.File(
                    file_count="multiple",
                    label="Drag and Drop Files Here",
                    file_types=[".pdf", ".txt"],
                    elem_id="file-upload"
                )
                upload_button = gr.Button("Upload & Index", elem_classes="upload-button")
                status_output = gr.Textbox(
                    label="Status",
                    placeholder="Upload files to start...",
                    interactive=False
                )
                file_info_output = gr.HTML(
                    label="File Information",
                    elem_classes="processing-info"
                )
                upload_button.click(
                    fn=create_or_update_index,
                    inputs=[file_upload],
                    outputs=[status_output, file_info_output]
                )
            
            with gr.Column(elem_classes="chatbot-container"):
                chatbot = gr.Chatbot(
                    height=500,
                    placeholder="Chat with your documents here... Type your question below.",
                    show_label=False,
                    type="messages"
                )
                with gr.Row(elem_classes="input-row"):
                    message_input = gr.Textbox(
                        placeholder="Type your question here...",
                        show_label=False,
                        container=False,
                        lines=1,
                        scale=8
                    )
                    submit_button = gr.Button("➀", elem_classes="submit-btn", scale=1)
                
                with gr.Accordion("Advanced Settings", open=False):
                    system_prompt = gr.Textbox(
                        value="As a knowledgeable assistant, your task is to provide detailed and context-rich answers based on the relevant information from all uploaded documents. When information is sourced from multiple documents, summarize the key points from each and explain how they relate, noting any connections or contradictions. Your response should be thorough, informative, and easy to understand.",
                        label="System Prompt",
                        lines=3
                    )
                    
                    with gr.Tab("Generation Parameters"):
                        temperature = gr.Slider(
                            minimum=0,
                            maximum=1,
                            step=0.1,
                            value=0.9,  
                            label="Temperature"
                        )
                        max_new_tokens = gr.Slider(
                            minimum=128,
                            maximum=8192,
                            step=64,
                            value=1024,
                            label="Max New Tokens",
                        )
                        top_p = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=0.95, 
                            label="Top P"
                        )
                        top_k = gr.Slider(
                            minimum=1,
                            maximum=100,  
                            step=1,
                            value=50,  
                            label="Top K"
                        )
                        penalty = gr.Slider(
                            minimum=0.0,
                            maximum=2.0,
                            step=0.1,
                            value=1.2,
                            label="Repetition Penalty"
                        )
                        
                    with gr.Tab("Retrieval Parameters"):
                        retriever_k = gr.Slider(
                            minimum=5,
                            maximum=30,
                            step=1,
                            value=15,
                            label="Initial Retrieval Size (Top K)"
                        )
                        merge_threshold = gr.Slider(
                            minimum=0.1,
                            maximum=0.9,
                            step=0.1,
                            value=0.5,
                            label="Merge Threshold (lower = more merging)"
                        )

                submit_button.click(
                    fn=stream_chat,
                    inputs=[
                        message_input, 
                        chatbot, 
                        system_prompt, 
                        temperature, 
                        max_new_tokens, 
                        top_p, 
                        top_k, 
                        penalty,
                        retriever_k,
                        merge_threshold
                    ],
                    outputs=chatbot
                )
                
                message_input.submit(
                    fn=stream_chat,
                    inputs=[
                        message_input, 
                        chatbot, 
                        system_prompt, 
                        temperature, 
                        max_new_tokens, 
                        top_p, 
                        top_k, 
                        penalty,
                        retriever_k,
                        merge_threshold
                    ],
                    outputs=chatbot
                )

    return demo

if __name__ == "__main__":
    initialize_model_and_tokenizer()
    demo = create_demo()
    demo.launch()