# =================== # Part 1: Importing Libraries # =================== import matplotlib.pyplot as plt # =================== # Part 2: Data Preparation # =================== # Data for the bar chart superfamilies = range(1, 11) accuracies = [0.9, 0.83, 0.86, 0.84, 0.7, 0.85, 0.93, 0.89, 0.88, 1.0] xlabel = "Top-10 superfamilies in training dataset" ylabel = "Accuracy" ylim = (0.0, 1.1) yticks = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] # =================== # Part 3: Plot Configuration and Rendering # =================== # Create the bar chart plt.figure( figsize=(10, 6) ) # Adjusting figure size to match the original image's dimensions plt.bar(superfamilies, accuracies, color="#7fa9cc") # Add a horizontal line for the average accuracy average_accuracy = sum(accuracies) / len(accuracies) plt.axhline(y=average_accuracy, color="red", linestyle="--") # Add labels and title plt.xlabel(xlabel) plt.ylabel(ylabel) # Set y-axis limits plt.ylim(ylim) # Set x-axis,y-axis ticks plt.xticks(superfamilies) plt.yticks(yticks) # =================== # Part 4: Saving Output # =================== # Displaying the plot with tight layout to minimize white space plt.tight_layout() plt.savefig("bar_8.pdf", bbox_inches="tight")