import spacy import streamlit as st from spacy_streamlit import visualize_ner import en_core_web_sm nlp = en_core_web_sm.load() st.write(""" # Finding tech trends on Data Science jobs using NER. (DEMO) """) nlp = spacy.load("en_core_web_sm") ruler = nlp.add_pipe("entity_ruler", before="ner") ruler.from_disk("patterns.jsonl") txt = st.text_area(label='Enter the job description') doc = nlp(txt) visualize_ner(doc, labels=nlp.get_pipe("ner").labels) st.json( [{'label': entity.label_, 'text': entity.text, 'start': entity.start, 'end': entity.end} \ for entity in doc.ents if entity.ent_id_ == 'SKILLS'] )