merve HF staff commited on
Commit
4723159
β€’
1 Parent(s): c0a2a14

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from transformers import Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForZeroShotObjectDetection
3
+ import torch
4
+ import gradio as gr
5
+
6
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
7
+
8
+ owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
9
+ owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
10
+
11
+ dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
12
+ dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
13
+
14
+ @spaces.GPU
15
+ def infer(img, text_queries, score_threshold, model):
16
+
17
+ if model == "dino":
18
+ queries=""
19
+ for query in text_queries:
20
+ queries += f"{query}. "
21
+
22
+ width, height = img.shape[:2]
23
+
24
+ target_sizes=[(width, height)]
25
+ inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device)
26
+
27
+ with torch.no_grad():
28
+ outputs = dino_model(**inputs)
29
+ outputs.logits = outputs.logits.cpu()
30
+ outputs.pred_boxes = outputs.pred_boxes.cpu()
31
+ results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
32
+ box_threshold=score_threshold,
33
+ target_sizes=target_sizes)
34
+ elif model == "owl":
35
+ size = max(img.shape[:2])
36
+ target_sizes = torch.Tensor([[size, size]])
37
+ inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device)
38
+
39
+ with torch.no_grad():
40
+ outputs = owl_model(**inputs)
41
+ outputs.logits = outputs.logits.cpu()
42
+ outputs.pred_boxes = outputs.pred_boxes.cpu()
43
+ results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
44
+
45
+ boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
46
+ result_labels = []
47
+
48
+ for box, score, label in zip(boxes, scores, labels):
49
+ box = [int(i) for i in box.tolist()]
50
+ if score < score_threshold:
51
+ continue
52
+ if model == "owl":
53
+ label = text_queries[label.cpu().item()]
54
+ result_labels.append((box, label))
55
+ return result_labels
56
+
57
+ def query_image(img, text_queries, owl_threshold, dino_threshold):
58
+ text_queries = text_queries
59
+ text_queries = text_queries.split(",")
60
+ owl_output = infer(img, text_queries, owl_threshold, "owl")
61
+ dino_output = infer(img, text_queries, owl_threshold, "dino")
62
+
63
+
64
+ return (img, owl_output), (img, dino_output)
65
+
66
+
67
+ owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold")
68
+ dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
69
+ owl_output = gr.AnnotatedImage(label="OWL Output")
70
+ dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
71
+ demo = gr.Interface(
72
+ query_image,
73
+ inputs=[gr.Image(label="Input Image"), gr.Textbox("Candidate Labels"), owl_threshold, dino_threshold],
74
+ outputs=[owl_output, dino_output],
75
+ title="Zero-Shot Object Detection with OWLv2",
76
+ examples=[["./bee.jpg", "bee, flower", 0.16, 0.12]]
77
+ )
78
+ demo.launch(debug=True)