Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ st.write("Try it yourself here ππ»")
|
|
26 |
generator = pipeline("text2text-generation", model = "mrm8488/t5-small-finetuned-quora-for-paraphrasing")
|
27 |
|
28 |
default_value_gen = "How can I put out grease fire?"
|
29 |
-
sent = st.text_area("Input",
|
30 |
outputs = generator(sent)
|
31 |
st.write("Paraphrased Example:")
|
32 |
st.write(outputs[0]["generated_text"])
|
@@ -41,7 +41,7 @@ st.write("Your English intent classification model will be between these two mod
|
|
41 |
model_id = "Helsinki-NLP/opus-mt-en-fr"
|
42 |
|
43 |
default_value_tr = "How are you?"
|
44 |
-
tr_input = st.
|
45 |
outputs = query(tr_input, model_id, api_token)
|
46 |
st.write("Translated Example:")
|
47 |
st.write(outputs[0]["translation_text"])
|
@@ -52,8 +52,8 @@ st.subheader("Easy Information Retrieval")
|
|
52 |
st.write("If you're making a chatbot that needs to provide information to user, you can take user's query and search for the answer in the documents you have, using question answering models. Look at the example and try it yourself here ππ»")
|
53 |
|
54 |
qa_model = pipeline("question-answering")
|
55 |
-
question = st.text_area("Question",
|
56 |
-
context = st.text_area("Context",
|
57 |
output_answer = qa_model(question = question, context = context)
|
58 |
st.write("Answer:")
|
59 |
st.write(output_answer["answer"])
|
|
|
26 |
generator = pipeline("text2text-generation", model = "mrm8488/t5-small-finetuned-quora-for-paraphrasing")
|
27 |
|
28 |
default_value_gen = "How can I put out grease fire?"
|
29 |
+
sent = st.text_area(label = "Input", value = default_value_gen, height = 10)
|
30 |
outputs = generator(sent)
|
31 |
st.write("Paraphrased Example:")
|
32 |
st.write(outputs[0]["generated_text"])
|
|
|
41 |
model_id = "Helsinki-NLP/opus-mt-en-fr"
|
42 |
|
43 |
default_value_tr = "How are you?"
|
44 |
+
tr_input = st.text_area(label = "Input in English", value = default_value_tr, height = 5)
|
45 |
outputs = query(tr_input, model_id, api_token)
|
46 |
st.write("Translated Example:")
|
47 |
st.write(outputs[0]["translation_text"])
|
|
|
52 |
st.write("If you're making a chatbot that needs to provide information to user, you can take user's query and search for the answer in the documents you have, using question answering models. Look at the example and try it yourself here ππ»")
|
53 |
|
54 |
qa_model = pipeline("question-answering")
|
55 |
+
question = st.text_area(label = "Question", value = "What does transformers do?", height = 5)
|
56 |
+
context = st.text_area(label = "Context", value = "π€ Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.")
|
57 |
output_answer = qa_model(question = question, context = context)
|
58 |
st.write("Answer:")
|
59 |
st.write(output_answer["answer"])
|