Spaces:
Runtime error
Runtime error
# This file is modified from https://github.com/tianweiy/CenterPoint | |
import torch | |
def _topk_1d(scores, batch_size, batch_idx, obj, K=40, nuscenes=False): | |
# scores: (N, num_classes) | |
topk_score_list = [] | |
topk_inds_list = [] | |
topk_classes_list = [] | |
for bs_idx in range(batch_size): | |
batch_inds = batch_idx==bs_idx | |
if obj.shape[-1] == 1 and not nuscenes: | |
score = scores[batch_inds].permute(1, 0) | |
topk_scores, topk_inds = torch.topk(score, K) | |
topk_score, topk_ind = torch.topk(obj[topk_inds.view(-1)].squeeze(-1), K) #torch.topk(topk_scores.view(-1), K) | |
else: | |
score = obj[batch_inds].permute(1, 0) | |
topk_scores, topk_inds = torch.topk(score, min(K, score.shape[-1])) | |
topk_score, topk_ind = torch.topk(topk_scores.view(-1), min(K, topk_scores.view(-1).shape[-1])) | |
topk_classes = (topk_ind // K).int() | |
topk_inds = topk_inds.view(-1).gather(0, topk_ind) | |
#print('topk_inds', topk_inds) | |
if not obj is None and obj.shape[-1] == 1: | |
topk_score_list.append(obj[batch_inds][topk_inds]) | |
else: | |
topk_score_list.append(topk_score) | |
topk_inds_list.append(topk_inds) | |
topk_classes_list.append(topk_classes) | |
topk_score = torch.stack(topk_score_list) | |
topk_inds = torch.stack(topk_inds_list) | |
topk_classes = torch.stack(topk_classes_list) | |
return topk_score, topk_inds, topk_classes | |
def gather_feat_idx(feats, inds, batch_size, batch_idx): | |
feats_list = [] | |
dim = feats.size(-1) | |
_inds = inds.unsqueeze(-1).expand(inds.size(0), inds.size(1), dim) | |
for bs_idx in range(batch_size): | |
batch_inds = batch_idx==bs_idx | |
feat = feats[batch_inds] | |
feats_list.append(feat.gather(0, _inds[bs_idx])) | |
feats = torch.stack(feats_list) | |
return feats | |
def decode_bbox_from_voxels_nuscenes(batch_size, indices, obj, rot_cos, rot_sin, | |
center, center_z, dim, vel=None, iou=None, point_cloud_range=None, voxel_size=None, voxels_3d=None, | |
feature_map_stride=None, K=100, score_thresh=None, post_center_limit_range=None, add_features=None): | |
batch_idx = indices[:, 0] | |
spatial_indices = indices[:, 1:] | |
scores, inds, class_ids = _topk_1d(None, batch_size, batch_idx, obj, K=K, nuscenes=True) | |
center = gather_feat_idx(center, inds, batch_size, batch_idx) | |
rot_sin = gather_feat_idx(rot_sin, inds, batch_size, batch_idx) | |
rot_cos = gather_feat_idx(rot_cos, inds, batch_size, batch_idx) | |
center_z = gather_feat_idx(center_z, inds, batch_size, batch_idx) | |
dim = gather_feat_idx(dim, inds, batch_size, batch_idx) | |
spatial_indices = gather_feat_idx(spatial_indices, inds, batch_size, batch_idx) | |
if not add_features is None: | |
add_features = gather_feat_idx(add_features, inds, batch_size, batch_idx) #for add_feature in add_features] | |
if not isinstance(feature_map_stride, int): | |
feature_map_stride = gather_feat_idx(feature_map_stride.unsqueeze(-1), inds, batch_size, batch_idx) | |
angle = torch.atan2(rot_sin, rot_cos) | |
xs = (spatial_indices[:, :, -1:] + center[:, :, 0:1]) * feature_map_stride * voxel_size[0] + point_cloud_range[0] | |
ys = (spatial_indices[:, :, -2:-1] + center[:, :, 1:2]) * feature_map_stride * voxel_size[1] + point_cloud_range[1] | |
box_part_list = [xs, ys, center_z, dim, angle] | |
if not vel is None: | |
vel = gather_feat_idx(vel, inds, batch_size, batch_idx) | |
box_part_list.append(vel) | |
if not iou is None: | |
iou = gather_feat_idx(iou, inds, batch_size, batch_idx) | |
iou = torch.clamp(iou, min=0, max=1.) | |
final_box_preds = torch.cat((box_part_list), dim=-1) | |
final_scores = scores.view(batch_size, K) | |
final_class_ids = class_ids.view(batch_size, K) | |
if not add_features is None: | |
add_features = add_features.view(batch_size, K, add_features.shape[-1]) #for add_feature in add_features] | |
assert post_center_limit_range is not None | |
mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2) | |
mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2) | |
if score_thresh is not None: | |
mask &= (final_scores > score_thresh) | |
ret_pred_dicts = [] | |
for k in range(batch_size): | |
cur_mask = mask[k] | |
cur_boxes = final_box_preds[k, cur_mask] | |
cur_scores = final_scores[k, cur_mask] | |
cur_labels = final_class_ids[k, cur_mask] | |
cur_add_features = add_features[k, cur_mask] if not add_features is None else None | |
cur_iou = iou[k, cur_mask] if not iou is None else None | |
ret_pred_dicts.append({ | |
'pred_boxes': cur_boxes, | |
'pred_scores': cur_scores, | |
'pred_labels': cur_labels, | |
'pred_ious': cur_iou, | |
'add_features': cur_add_features, | |
}) | |
return ret_pred_dicts | |