Spaces:
Sleeping
Sleeping
File size: 1,729 Bytes
3d2ccf5 050bcdd 39fa1f9 c7680ca 3d2ccf5 1b8a80e 296d90c 3d2ccf5 296d90c 5d2b7f0 296d90c 1b8a80e 5d2b7f0 3d2ccf5 1b8a80e 3d2ccf5 173a459 296d90c c2425d0 173a459 296d90c 1b8a80e 3d2ccf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import streamlit as st
import requests
import os
from streamlit_chat import message
@st.cache
def query(payload):
api_token = os.getenv("api_token")
model_id = "deepset/roberta-base-squad2"
headers = {"Authorization": f"Bearer {api_token}"}
API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
context = "To extract information from documents, use sentence similarity task. To do sentiment analysis from tweets, use text classification task. To detect masks from images, use object detection task. To extract information from invoices, use named entity recognition from token classification task."
message_history = ["Let's find out the best task for your use case! Tell me about your use case :)"]
for msg in message_history:
message(msg) # display all the previous message
placeholder = st.empty() # placeholder for latest message
input = st.text_input("You:")
message_history.append(input)
with placeholder.container():
message(message_history[-1]) # display the latest message
message(input, is_user=True) # align's the message to the right
data = query(
{
"inputs": {
"question": input,
"context": context,
}
}
)
try:
model_answer = data["answer"]
response_templates = [f"{model_answer} is the best task for this π€©", f"I think you should use {model_answer} πͺ", f"I think {model_answer} should work for you π€"]
bot_answer = random.choice(response_templates)
message_history.append(bot_answer)
except:
message("I'm listening π ")
message_history.append("I'm listening π")
|