Spaces:
Sleeping
Sleeping
File size: 4,205 Bytes
b4e5268 8f64959 55a8b20 dd507bb 4f4aca6 b4e5268 397c421 0a98570 9b1d956 6a7d03a 2cc0376 4f4aca6 37b2fc4 59a4d03 6a7d03a 9d68da3 b956157 b4e5268 b956157 b4e5268 f7dd554 b4e5268 cb9e85b b4e5268 0000cad 4f4aca6 4595535 4f4aca6 b4e5268 4f4aca6 b4e5268 6812dc5 647afad ab55f29 2651861 0b0e73b ab55f29 647afad ab55f29 647afad 2b8b939 5d2d937 2b8b939 5d2d937 2b8b939 5d2d937 647afad 598d787 647afad ffdd294 417bcab ffdd294 417bcab 647afad 0b0e73b 2b8b939 ab55f29 202c93a ab55f29 2651861 647afad ab55f29 2651861 0f28a78 647afad 6812dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.chains import LLMChain
from huggingface_hub import login
login(token=st.secrets["HF_TOKEN"])
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True)
retriever = db.as_retriever(
search_type="mmr",
search_kwargs={'k': 1}
)
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider?
Answer in french only
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in french only
Vous devez répondre aux questions en français.
"""
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
mistral_llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)
# Create prompt from prompt template
prompt = PromptTemplate(
input_variables=["question"],
template=prompt_template,
)
# Create llm chain
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
retriever.search_kwargs = {'k':1}
qa = RetrievalQA.from_chain_type(
llm=mistral_llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt},
)
import streamlit as st
# Streamlit interface with improved aesthetics
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
# Define function to handle user input and display chatbot response
def chatbot_response(user_input):
response = qa.run(user_input)
return response
# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])
with col1:
st.image("Design 3_22.png", width=150, use_column_width=True) # Adjust image path and size as needed
with col3:
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True) # Adjust image path and size as needed
# Streamlit components
# Ajouter un peu de CSS pour centrer le texte
# Ajouter un peu de CSS pour centrer le texte et le colorer en orange foncé
st.markdown("""
<style>
.centered-text {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
# Utiliser la classe CSS pour centrer et colorer le texte
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown("""
<style>
.centered-orange-text {
text-align: center;
color: darkorange;
}
</style>
""", unsafe_allow_html=True)
# Centrer le texte principal
# Centrer et colorer en orange foncé le texte spécifique
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
# Input and button for user interaction
user_input = st.text_input("You:", "")
submit_button = st.button("Ask 📨")
# Handle user input
if submit_button:
if user_input.strip() != "":
bot_response = chatbot_response(user_input)
st.markdown("### Bot:")
st.text_area("", value=bot_response, height=600)
else:
st.warning("⚠️ Please enter a message.")
# Motivational quote at the bottom
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")
|