Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,59 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
-
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
7 |
-
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
-
from langchain.
|
10 |
-
from langchain.chains import LLMChain
|
11 |
-
|
12 |
from huggingface_hub import login
|
13 |
-
login(token=st.secrets["HF_TOKEN"])
|
14 |
-
|
15 |
-
from langchain_community.document_loaders import TextLoader
|
16 |
-
from langchain_text_splitters import CharacterTextSplitter
|
17 |
-
from langchain_community.document_loaders import PyPDFLoader
|
18 |
-
from langchain.chains import RetrievalQA
|
19 |
-
from langchain.prompts import PromptTemplate
|
20 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
21 |
-
|
22 |
-
db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),allow_dangerous_deserialization=True)
|
23 |
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
retriever = db.as_retriever(
|
27 |
search_type="mmr",
|
28 |
search_kwargs={'k': 1}
|
29 |
)
|
30 |
|
31 |
-
|
32 |
prompt_template = """
|
33 |
### [INST]
|
34 |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
|
35 |
-
|
36 |
Answer in french only
|
37 |
-
|
38 |
{context}
|
39 |
Vous devez répondre aux questions en français.
|
40 |
-
|
41 |
### QUESTION:
|
42 |
{question}
|
43 |
[/INST]
|
44 |
Answer in french only
|
45 |
Vous devez répondre aux questions en français.
|
46 |
-
|
47 |
-
"""
|
48 |
|
49 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
50 |
|
|
|
51 |
mistral_llm = HuggingFaceEndpoint(
|
52 |
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
|
53 |
)
|
54 |
|
55 |
-
# Create prompt
|
56 |
prompt = PromptTemplate(
|
57 |
input_variables=["question"],
|
58 |
template=prompt_template,
|
59 |
)
|
60 |
-
|
61 |
-
# Create llm chain
|
62 |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
63 |
|
64 |
-
|
65 |
-
retriever.search_kwargs = {'k':1}
|
66 |
qa = RetrievalQA.from_chain_type(
|
67 |
llm=mistral_llm,
|
68 |
chain_type="stuff",
|
@@ -70,9 +61,7 @@ qa = RetrievalQA.from_chain_type(
|
|
70 |
chain_type_kwargs={"prompt": prompt},
|
71 |
)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
# Streamlit interface with improved aesthetics
|
76 |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
|
77 |
|
78 |
# Define function to handle user input and display chatbot response
|
@@ -80,30 +69,32 @@ def chatbot_response(user_input):
|
|
80 |
response = qa.run(user_input)
|
81 |
return response
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Create columns for logos
|
85 |
col1, col2, col3 = st.columns([2, 3, 2])
|
86 |
|
87 |
with col1:
|
88 |
-
st.image("Design 3_22.png", width=150, use_column_width=True)
|
89 |
|
90 |
with col3:
|
91 |
-
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)
|
92 |
-
|
93 |
-
#
|
94 |
-
# Ajouter un peu de CSS pour centrer le texte et le colorer en orange foncé
|
95 |
st.markdown("""
|
96 |
<style>
|
97 |
.centered-text {
|
98 |
text-align: center;
|
99 |
}
|
100 |
-
</style>
|
101 |
-
""", unsafe_allow_html=True)
|
102 |
-
|
103 |
-
# Utiliser la classe CSS pour centrer et colorer le texte
|
104 |
-
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
|
105 |
-
st.markdown("""
|
106 |
-
<style>
|
107 |
.centered-orange-text {
|
108 |
text-align: center;
|
109 |
color: darkorange;
|
@@ -111,23 +102,35 @@ st.markdown("""
|
|
111 |
</style>
|
112 |
""", unsafe_allow_html=True)
|
113 |
|
114 |
-
#
|
115 |
-
|
116 |
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
|
|
|
117 |
# Input and button for user interaction
|
118 |
user_input = st.text_input("You:", "")
|
119 |
submit_button = st.button("Ask 📨")
|
120 |
|
121 |
-
# Handle user input
|
122 |
if submit_button:
|
123 |
if user_input.strip() != "":
|
124 |
bot_response = chatbot_response(user_input)
|
125 |
st.markdown("### Bot:")
|
126 |
st.text_area("", value=bot_response, height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
st.warning("⚠️ Please enter a message.")
|
129 |
|
130 |
# Motivational quote at the bottom
|
131 |
st.markdown("---")
|
132 |
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")
|
133 |
-
|
|
|
1 |
import os
|
2 |
+
import csv
|
3 |
import streamlit as st
|
4 |
from langchain_community.vectorstores import FAISS
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
6 |
from langchain_huggingface import HuggingFaceEndpoint
|
|
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain.chains import LLMChain, RetrievalQA
|
|
|
|
|
9 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Login to Hugging Face
|
12 |
+
login(token=st.secrets["HF_TOKEN"])
|
13 |
|
14 |
+
# Load FAISS index
|
15 |
+
db = FAISS.load_local(
|
16 |
+
"faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),
|
17 |
+
allow_dangerous_deserialization=True
|
18 |
+
)
|
19 |
|
20 |
+
# Create retriever
|
21 |
retriever = db.as_retriever(
|
22 |
search_type="mmr",
|
23 |
search_kwargs={'k': 1}
|
24 |
)
|
25 |
|
26 |
+
# Define prompt template
|
27 |
prompt_template = """
|
28 |
### [INST]
|
29 |
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
|
30 |
+
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider?
|
31 |
Answer in french only
|
32 |
+
|
33 |
{context}
|
34 |
Vous devez répondre aux questions en français.
|
|
|
35 |
### QUESTION:
|
36 |
{question}
|
37 |
[/INST]
|
38 |
Answer in french only
|
39 |
Vous devez répondre aux questions en français.
|
40 |
+
"""
|
|
|
41 |
|
42 |
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
43 |
|
44 |
+
# Create LLM model
|
45 |
mistral_llm = HuggingFaceEndpoint(
|
46 |
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
|
47 |
)
|
48 |
|
49 |
+
# Create prompt and LLM chain
|
50 |
prompt = PromptTemplate(
|
51 |
input_variables=["question"],
|
52 |
template=prompt_template,
|
53 |
)
|
|
|
|
|
54 |
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
55 |
|
56 |
+
# Create QA chain
|
|
|
57 |
qa = RetrievalQA.from_chain_type(
|
58 |
llm=mistral_llm,
|
59 |
chain_type="stuff",
|
|
|
61 |
chain_type_kwargs={"prompt": prompt},
|
62 |
)
|
63 |
|
64 |
+
# Streamlit UI setup
|
|
|
|
|
65 |
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
|
66 |
|
67 |
# Define function to handle user input and display chatbot response
|
|
|
69 |
response = qa.run(user_input)
|
70 |
return response
|
71 |
|
72 |
+
# Define function to save feedback to CSV
|
73 |
+
def save_feedback(question, response, rating, comment):
|
74 |
+
filename = 'feedback.csv'
|
75 |
+
file_exists = os.path.isfile(filename)
|
76 |
+
with open(filename, 'a', newline='', encoding='utf-8') as csvfile:
|
77 |
+
fieldnames = ['question', 'response', 'rating', 'comment']
|
78 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
79 |
+
if not file_exists:
|
80 |
+
writer.writeheader()
|
81 |
+
writer.writerow({'question': question, 'response': response, 'rating': rating, 'comment': comment})
|
82 |
|
83 |
# Create columns for logos
|
84 |
col1, col2, col3 = st.columns([2, 3, 2])
|
85 |
|
86 |
with col1:
|
87 |
+
st.image("Design 3_22.png", width=150, use_column_width=True)
|
88 |
|
89 |
with col3:
|
90 |
+
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)
|
91 |
+
|
92 |
+
# Add CSS for styling
|
|
|
93 |
st.markdown("""
|
94 |
<style>
|
95 |
.centered-text {
|
96 |
text-align: center;
|
97 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
.centered-orange-text {
|
99 |
text-align: center;
|
100 |
color: darkorange;
|
|
|
102 |
</style>
|
103 |
""", unsafe_allow_html=True)
|
104 |
|
105 |
+
# Center and color text
|
106 |
+
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
|
107 |
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
|
108 |
+
|
109 |
# Input and button for user interaction
|
110 |
user_input = st.text_input("You:", "")
|
111 |
submit_button = st.button("Ask 📨")
|
112 |
|
|
|
113 |
if submit_button:
|
114 |
if user_input.strip() != "":
|
115 |
bot_response = chatbot_response(user_input)
|
116 |
st.markdown("### Bot:")
|
117 |
st.text_area("", value=bot_response, height=600)
|
118 |
+
|
119 |
+
# Feedback Section
|
120 |
+
st.markdown("### Évaluation de la réponse")
|
121 |
+
rating = st.slider("Rating (1 to 5)", 1, 5, 3)
|
122 |
+
comment = st.text_area("Your comment:", "")
|
123 |
+
|
124 |
+
if st.button("Submit Feedback"):
|
125 |
+
if comment.strip() != "":
|
126 |
+
save_feedback(user_input, bot_response, rating, comment)
|
127 |
+
st.success("Thank you for your feedback!")
|
128 |
+
else:
|
129 |
+
st.warning("⚠️ Please enter a comment.")
|
130 |
+
|
131 |
else:
|
132 |
st.warning("⚠️ Please enter a message.")
|
133 |
|
134 |
# Motivational quote at the bottom
|
135 |
st.markdown("---")
|
136 |
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")
|
|