import os import streamlit as st import pandas as pd from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from huggingface_hub import login from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain.chains import RetrievalQA # Authenticate with Hugging Face login(token=st.secrets["HF_TOKEN"]) # Load FAISS index db = FAISS.load_local("faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'), allow_dangerous_deserialization=True) # Set up retriever retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 1}) # Prompt template for the LLM prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge. You answer in FRENCH. Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello, your only answer will be Hi! comment puis-je vous aider? Answer in French only. {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in French only. Vous devez répondre aux questions en français. """ # Set up the LLM from Hugging Face repo_id = "mistralai/Mistral-7B-Instruct-v0.3" mistral_llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"] ) # Create prompt from prompt template prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) # Create LLM chain llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) # Set up RetrievalQA chain retriever.search_kwargs = {'k': 1} qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) # Streamlit interface setup st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖") # Function to handle user input and display chatbot response def chatbot_response(user_input): response = qa.run(user_input) return response import gspread from oauth2client.service_account import ServiceAccountCredentials import json # Load Google service account credentials from Hugging Face secrets GOOGLE_SERVICE_ACCOUNT_JSON = st.secrets["GOOGLE_SERVICE_ACCOUNT_JSON"] # Google Sheets setup scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"] service_account_info = json.loads(GOOGLE_SERVICE_ACCOUNT_JSON) creds = ServiceAccountCredentials.from_json_keyfile_dict(service_account_info, scope) client = gspread.authorize(creds) sheet = client.open("Streamlit Feedback").sheet1 # Replace with your Google Sheet name # Function to save user feedback to Google Sheets def save_feedback(user_input, bot_response, rating, comment): feedback = [user_input, bot_response, rating, comment] sheet.append_row(feedback) # Streamlit app layout st.set_page_config(page_title="Feedback App", page_icon="🤖") st.markdown("

🤖 Chatbot Feedback 🤖

", unsafe_allow_html=True) user_input = st.text_input("You:") bot_response = "This is a bot response." # Replace this with your chatbot's response logic st.markdown("### Rate the response:") rating = st.selectbox("", [1, 2, 3, 4, 5]) st.markdown("### Leave a comment:") comment = st.text_area("") if st.button("Submit"): if user_input.strip() and comment.strip(): save_feedback(user_input, bot_response, rating, comment) st.success("Thank you for your feedback!") else: st.warning("Please provide both input and comment.") st.markdown("---") st.markdown("Collaboration is the key to success. Each question finds its answer, each challenge becomes an opportunity.")