import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline ) from transformers import BitsAndBytesConfig from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.prompts import PromptTemplate from langchain.schema.runnable import RunnablePassthrough from langchain.llms import HuggingFacePipeline from langchain.chains import LLMChain import transformers import transformers model_name='mistralai/Mistral-7B-Instruct-v0.1' from huggingface_hub import login login(token = 'HF_TOKEN') model_config = transformers.AutoConfig.from_pretrained( model_name, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" ################################################################# # bitsandbytes parameters ################################################################# # Activate 4-bit precision base model loading use_4bit = True # Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" # Quantization type (fp4 or nf4) bnb_4bit_quant_type = "nf4" # Activate nested quantization for 4-bit base models (double quantization) use_nested_quant = False ################################################################# # Set up quantization config ################################################################# compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) ############################################################# # Load pre-trained config ################################################################# model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, ) # Connect query to FAISS index using a retriever retriever = db.as_retriever( search_type="mmr", search_kwargs={'k': 1} ) from langchain.llms import HuggingFacePipeline from langchain.prompts import PromptTemplate from langchain.embeddings.huggingface import HuggingFaceEmbeddings text_generation_pipeline = transformers.pipeline( model=model, tokenizer=tokenizer, task="text-generation", temperature=0.02, repetition_penalty=1.1, return_full_text=True, max_new_tokens=512, ) prompt_template = """ ### [INST] Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH Analyse carefully the context and provide a direct answer based on the context. Answer in french only {context} Vous devez répondre aux questions en français. ### QUESTION: {question} [/INST] Answer in french only Vous devez répondre aux questions en français. """ mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline) # Create prompt from prompt template prompt = PromptTemplate( input_variables=["question"], template=prompt_template, ) # Create llm chain llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) from langchain.chains import RetrievalQA retriever.search_kwargs = {'k':1} qa = RetrievalQA.from_chain_type( llm=mistral_llm, chain_type="stuff", retriever=retriever, chain_type_kwargs={"prompt": prompt}, ) import gradio as gr def qna_chatbot(message, history): res = qa(message) answer = res["result"] return answer chat_interface = gr.ChatInterface(qna_chatbot) if __name__ == "__main__": chat_interface.launch(debug=True)