Spaces:
Running
Running
File size: 1,555 Bytes
eadf256 8aee673 eadf256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
from eval import interpolator, util
import tensorflow as tf
import gradio as gr
_UINT8_MAX_F = float(np.iinfo(np.uint8).max)
from huggingface_hub import snapshot_download
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
interpolator = interpolator.Interpolator(model, None)
batch_dt = np.full(shape=(1,), fill_value=0.5, dtype=np.float32)
def predict(frame1, frame2, times_to_interpolate):
img1 = frame1
img2 = frame2
if not img1.size == img2.size:
img1 = img1.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1])))
img2 = img2.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1])))
frame1 = 'new_frame1.png'
frame2 = 'new_frame2.png'
img1.save(frame1)
img2.save(frame2)
input_frames = [str(frame1), str(frame2)]
frames = list(
util.interpolate_recursively_from_files(
input_frames, times_to_interpolate, interpolator))
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
out_path = "out.mp4"
mediapy.write_video(str(out_path), frames, fps=30)
return out_path
gr.Interface(predict,[gr.inputs.Image(type='pil'),gr.inputs.Image(type='pil'),gr.inputs.Slider(minimum=2,maximum=5,step=1)],"playable_video").launch(enable_queue=True) |