File size: 8,002 Bytes
85bcb47
 
 
 
94b76d5
 
85bcb47
94b76d5
85bcb47
94b76d5
85bcb47
 
 
 
94b76d5
85bcb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24167e
85bcb47
f24167e
85bcb47
 
 
 
 
 
 
 
 
 
 
 
f24167e
85bcb47
 
f24167e
 
 
85bcb47
 
 
 
 
 
94b76d5
f24167e
85bcb47
f24167e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b76d5
85bcb47
f24167e
 
 
 
 
 
 
 
 
 
 
 
94b76d5
85bcb47
f24167e
 
 
 
 
 
 
 
 
 
 
 
94b76d5
85bcb47
f24167e
 
 
 
 
 
 
 
 
 
 
 
85bcb47
 
f24167e
 
 
 
 
 
 
 
 
 
 
 
94b76d5
85bcb47
f24167e
 
 
 
 
 
 
 
 
85bcb47
f24167e
 
 
 
 
 
 
 
 
 
85bcb47
f24167e
 
 
 
 
 
 
 
 
94b76d5
85bcb47
 
 
 
 
 
 
 
 
f24167e
 
 
 
85bcb47
 
 
 
 
94b76d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description" content="DeepSeek: Advancing Open-Source Language Models">
  <meta name="keywords" content="DeepSeek, LLM, AI">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>DeepSeek: Advancing Open-Source Language Models</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">DeepSeek Papers</h1>
          <div class="is-size-5 publication-authors">
            Advancing Open-Source Language Models
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">DeepSeek Research Contributions</h2>
        <div class="content has-text-justified">
          <p>
            Below is a list of significant papers by DeepSeek detailing advancements in large language models (LLMs), 
            ordered by release date from most recent to oldest. Each paper includes a brief description and highlights 
            upcoming deep dives.
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->

    <!-- Paper Collection -->
    <div class="columns is-centered">
      <div class="column is-four-fifths">
        <div class="content">
          <div class="publication-list">
            <!-- Papers in chronological order -->
            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-info">
                <strong>Release Date:</strong> January 20, 2025
              </div>
              <div class="publication-description">
                The R1 model enhances reasoning capabilities through large-scale reinforcement learning, competing 
                directly with leading models like OpenAI's o1.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeek-V3 Technical Report</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-info">
                <strong>Release Date:</strong> December 2024
              </div>
              <div class="publication-description">
                This report discusses the scaling of sparse MoE networks to 671 billion parameters, utilizing mixed 
                precision training and HPC co-design strategies.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-info">
                <strong>Release Date:</strong> May 2024
              </div>
              <div class="publication-description">
                This paper introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing 
                training costs by 42%.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-info">
                <strong>Release Date:</strong> April 2024
              </div>
              <div class="publication-description">
                This paper presents methods to improve mathematical reasoning in LLMs, introducing the Group 
                Relative Policy Optimization (GRPO) algorithm.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeekLLM: Scaling Open-Source Language Models with Longer-termism</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-info">
                <strong>Release Date:</strong> November 29, 2023
              </div>
              <div class="publication-description">
                This foundational paper explores scaling laws and the trade-offs between data and model size, 
                establishing the groundwork for subsequent models.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-description">
                Focuses on enhancing theorem proving capabilities in language models using synthetic data for training.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-description">
                This paper details advancements in code-related tasks with an emphasis on open-source methodologies, 
                improving upon earlier coding models.
              </div>
            </div>

            <div class="publication-item">
              <div class="publication-title">
                <a href="#">DeepSeekMoE</a>
                <span class="tag is-info is-light">[Deep Dive Coming Soon]</span>
              </div>
              <div class="publication-description">
                Discusses the integration and benefits of the Mixture-of-Experts approach within the DeepSeek framework.
              </div>
            </div>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <p>
        This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
        Commons Attribution-ShareAlike 4.0 International License</a>.
      </p>
    </div>
  </div>
</footer>

</body>
</html>