metek7's picture
Update app.py
40bd94b verified
raw
history blame
4.97 kB
import gradio as gr
import subprocess
from deep_translator import GoogleTranslator
import torch
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from decord import VideoReader, cpu
import numpy as np
import copy
# Gerekli kütüphanelerin kurulumu
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
subprocess.run("pip install deep_translator", shell=True)
# Çevirmen nesnesi oluştur
translator = GoogleTranslator(source='tr', target='en')
translator_reverse = GoogleTranslator(source='en', target='tr')
title = "# 🙋🏻‍♂️🌟Tonic'in 🌋📹LLaVA-Video'suna Hoş Geldiniz!"
description1 = """**🌋📹LLaVA-Video-7B-Qwen2**, ...
"""
description2 = """
...
"""
join_us = """
## Bize Katılın:
...
"""
def load_video(video_path, max_frames_num, fps=1, force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
total_frame_num = len(vr)
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames, frame_time, total_frame_num / vr.get_avg_fps()
# Model yükleme
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2"
model_name = "llava_qwen"
device = "cuda" if torch.cuda.is_available() else "cpu"
device_map = "auto"
print("Model yükleniyor...")
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)
model.eval()
print("Model başarıyla yüklendi!")
def process_video(video_path, question):
try:
max_frames_num = 64
video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16()
video = [video]
conv_template = "qwen_1_5"
time_instruction = f"Video {video_time:.2f} saniye sürmektedir ve {len(video[0])} kare uniform olarak örneklenmiştir. Bu kareler {frame_time} konumlarında bulunmaktadır. Lütfen bu videoyla ilgili aşağıdaki soruları cevaplayın."
# Soruyu İngilizce'ye çevir
question_en = translator.translate(question)
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question_en}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], full_question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
input_ids,
images=video,
modalities=["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
# Cevabı Türkçe'ye çevir
response_tr = translator_reverse.translate(response)
return response_tr
except Exception as e:
return f"Bir hata oluştu: {str(e)}"
def gradio_interface(video_file, question):
if video_file is None:
return "Lütfen bir video dosyası yükleyin."
response = process_video(video_file, question)
return response
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
with gr.Group():
gr.Markdown(description1)
with gr.Group():
gr.Markdown(description2)
with gr.Accordion("Bize Katılın", open=False):
gr.Markdown(join_us)
with gr.Row():
with gr.Column():
video_input = gr.Video()
question_input = gr.Textbox(label="🙋🏻‍♂️Kullanıcı Sorusu", placeholder="Video hakkında bir soru sorun...")
submit_button = gr.Button("🌋📹LLaVA-Video'ya Sor")
output = gr.Textbox(label="🌋📹LLaVA-Video")
submit_button.click(
fn=gradio_interface,
inputs=[video_input, question_input],
outputs=output
)
if __name__ == "__main__":
demo.launch(show_error=True)