Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from tensorflow import keras | |
from keras.models import load_model | |
import folium | |
import re | |
# Load the CNN feature extractor model | |
from tensorflow.keras.models import load_model | |
loaded_feature_extractor = load_model("feature_extractor_model") | |
# Load the SVM model | |
import pickle | |
with open("svm_model_probablity.pkl", 'rb') as file: | |
loaded_svm_model = pickle.load(file) | |
# Load the mineral detection model | |
mineral_detection_model = tf.keras.models.load_model("mineral_detection_model_Final_4_18_2024.h5") | |
# Define the class labels | |
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite'] | |
mineral_facts = { | |
'biotite': "Hardness: 2.5-3\nMagnetism: None\nDensity: 2.7-3.3 g/cm³\nColors: Black, brown, green\nDescription: A phyllosilicate mineral of the mica group with a distinctive platy structure.", | |
'granite': "Hardness: 6-7\nMagnetism: None\nDensity: 2.6-2.7 g/cm³\nColors: Gray, pink, white\nDescription: An intrusive igneous rock composed mainly of quartz, feldspar, and mica.", | |
'olivine': "Hardness: 6.5-7\nMagnetism: None\nDensity: 3.2-3.4 g/cm³\nColors: Green, yellow-green, brown\nDescription: A nesosilicate mineral with a green, glassy appearance, commonly found in mafic and ultramafic rocks.", | |
'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.", | |
'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks." | |
} | |
# Function to preprocess the image for mineral detection | |
def preprocess_image_detection(img_array): | |
if img_array is None: | |
return None | |
img = (img_array * 255).astype(np.uint8) # Convert back to uint8 | |
img_array = cv2.resize(img, (150, 150)) # Resize to 150x150 | |
img_array = img_array.astype(np.uint8) | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
return img_array | |
# Function to preprocess the image for classification | |
def preprocess_image_classification(img_array): | |
if img_array is None: | |
return None | |
img = (img_array * 255).astype(np.uint8) # Convert back to uint8 | |
img_array = cv2.resize(img, (224, 224)) # Resize to 224x224 | |
img_array = img_array.astype(np.uint8) | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
return img_array | |
# Define the function to detect if the input is a mineral | |
def detect_mineral(image): | |
if image is not None: | |
image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB') | |
image = np.array(image) | |
image = Image.fromarray(image.astype(np.uint8), 'RGB') | |
image = image.resize((150, 150)) # Assuming the model expects 150x150 images | |
image = np.array(image) / 255.0 | |
image = np.expand_dims(image, axis=0) | |
# Make prediction | |
prediction = mineral_detection_model.predict(image) | |
is_mineral = prediction[0][0] < 0.5 # Assuming binary classification | |
return is_mineral | |
else: | |
# Handle the case where no image is provided | |
return "No image provided." | |
# Define the function to make predictions | |
def classify_image(image): | |
# Check if the input is a mineral | |
is_mineral = detect_mineral(image) | |
if not is_mineral: | |
return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", "" | |
# Preprocess the image for classification | |
image = preprocess_image_classification(np.array(image)) | |
if image is None: | |
return "Error preprocessing image.", "", "" | |
# Extract features using the loaded CNN feature extractor | |
image_features = loaded_feature_extractor.predict(image) | |
# Make prediction using the loaded SVM model | |
predicted_label = loaded_svm_model.predict(image_features) | |
class_idx = predicted_label[0] | |
predicted_class_name = class_labels[class_idx] | |
# Get probabilities for all classes | |
probabilities = loaded_svm_model.predict_proba(image_features)[0] | |
# Convert prediction scores to percentages | |
prediction_scores_percentages = [f"{score * 100:.2f}%" for score in probabilities] | |
predicted_scores = "\n".join([f"{label}: {score}" for label, score in zip(class_labels, prediction_scores_percentages)]) | |
# Get key facts about the predicted mineral | |
mineral_key_facts = mineral_facts.get(predicted_class_name, "No key facts available for this mineral.") | |
return predicted_class_name, predicted_scores, mineral_key_facts | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">Microscopic Mineral Identification App</h1> | |
<p>Welcome to our interactive space dedicated to identifying minerals through microscopic imagery. This platform showcases various microscopic images that reveal the intricate patterns and characteristics of different minerals. To get started, you can explore our collection of mineral images or use your own to identify key features such as crystal structure, color variations, and inclusions.</p> | |
<p>🔎 For a deeper understanding of mineral identification techniques and how to analyze microscopic mineral images, visit our comprehensive <a href="https://example.com/mineral-guide">mineral guide</a>. It provides insights into common mineralogical features and how to recognize them.</p> | |
<p>🧪 Interested in more advanced mineralogy? Check Mindat which can provide more details about the mineral identified <a href="https://www.mindat.org/"><b>Mindat.org</b></a> section, where we dive into more complex mineral structures and analytical methods.</p> | |
</div> | |
''' | |
# Welcome Message | |
def welcome(name): | |
return f"Welcome to Gradio, {name}!" | |
app_title = "Mineral Identification using AI" | |
app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties." | |
custom_css = """ | |
.gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;background-color: #f0f0f0;} | |
#title-container { | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
margin-bottom: 20px; | |
} | |
#app-title { | |
margin-right: 20px; /* Adjust the spacing between the title and logo */ | |
} | |
#logo-img { | |
width: 50px; /* Adjust the logo size as needed */ | |
height: 50px; | |
} | |
""" | |
# Gradio Blocks interface | |
with gr.Blocks( | |
title=app_title, | |
css=custom_css, | |
theme=gr.themes.Monochrome(), | |
) as demo: | |
gr.Markdown(DESCRIPTION) | |
# Create interface components | |
with gr.Row(): | |
image_input = gr.Image(elem_id="image_input", type="pil") | |
output_components = [ | |
gr.Textbox(label="Mineral Name", elem_id="predicted_class_name"), | |
gr.Textbox(label="Prediction Scores of Model", elem_id="predicted_scores", lines=5), | |
gr.Textbox(label="Key Facts About Mineral", elem_id="mineral_key_facts", lines=8), | |
] | |
image_button = gr.Button("Classify Mineral") | |
image_button.click( | |
classify_image, | |
inputs=image_input, | |
outputs=output_components | |
) | |
gr.Examples( | |
examples=["Gradio examples/Biotite1.jpg", "Gradio examples/Biotite2.jpg", "Gradio examples/Olivine1.jpg", "Gradio examples/Plagioclase1.jpg"], | |
inputs=image_input, | |
) | |
demo.launch(auth_message="Welcome to the Mineral Identification App.") |