Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,12 @@ import gradio as gr
|
|
6 |
from tensorflow import keras
|
7 |
from keras.models import load_model
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#Back_End_code
|
13 |
# Load the classification model
|
14 |
-
model =
|
15 |
model = tf.keras.models.load_model(model)
|
16 |
|
17 |
# Load the mineral detection model
|
18 |
-
mineral_detection_model = tf.keras.models.load_model(
|
19 |
|
20 |
# Define the class labels
|
21 |
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
|
@@ -26,7 +22,7 @@ mineral_facts = {
|
|
26 |
'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
|
27 |
'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
|
28 |
}
|
29 |
-
#
|
30 |
def preprocess_image_detection(img_array):
|
31 |
if img_array is None:
|
32 |
return None
|
@@ -36,17 +32,17 @@ def preprocess_image_detection(img_array):
|
|
36 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
37 |
return img_array
|
38 |
|
39 |
-
#
|
40 |
def preprocess_image_classification(img_array):
|
41 |
if img_array is None:
|
42 |
return None
|
43 |
-
img = (img_array * 255).astype(np.uint8)
|
44 |
-
img_array = cv2.resize(img, (224, 224)) #
|
45 |
img_array = img_array.astype(np.uint8)
|
46 |
-
img_array = np.expand_dims(img_array, axis=0)
|
47 |
return img_array
|
48 |
|
49 |
-
# function to detect if the input is a mineral
|
50 |
def detect_mineral(image):
|
51 |
if image is not None:
|
52 |
image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
|
@@ -64,24 +60,24 @@ def detect_mineral(image):
|
|
64 |
# Handle the case where no image is provided
|
65 |
return "No image provided."
|
66 |
|
67 |
-
# function to make predictions
|
68 |
def classify_image(image):
|
69 |
# Check if the input is a mineral
|
70 |
is_mineral = detect_mineral(image)
|
71 |
if not is_mineral:
|
72 |
return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", ""
|
73 |
|
74 |
-
#
|
75 |
image = preprocess_image_classification(np.array(image))
|
76 |
if image is None:
|
77 |
return "Error preprocessing image.", "", ""
|
78 |
|
79 |
-
#
|
80 |
prediction = model.predict(image)
|
81 |
class_idx = np.argmax(prediction)
|
82 |
prediction_scores = prediction[0]
|
83 |
|
84 |
-
#
|
85 |
prediction_scores_percentages = [f"{score * 100:.2f}%" for score in prediction_scores]
|
86 |
|
87 |
# Get the predicted class name and key facts
|
@@ -91,12 +87,23 @@ def classify_image(image):
|
|
91 |
|
92 |
return predicted_class_name, predicted_scores, mineral_key_facts
|
93 |
|
94 |
-
|
95 |
-
#Front_End_code
|
96 |
app_title = "Mineral Identification using AI"
|
97 |
app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."
|
98 |
|
99 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
with gr.Row():
|
101 |
image_input = gr.Image(elem_id="image_input", type="pil")
|
102 |
output_components = [
|
@@ -106,4 +113,4 @@ with gr.Blocks(title=app_title, css=".gradio-container {display: flex; justify-c
|
|
106 |
]
|
107 |
image_button = gr.Button("Classify Mineral")
|
108 |
image_button.click(classify_image, inputs=image_input, outputs=output_components)
|
109 |
-
demo.launch(
|
|
|
6 |
from tensorflow import keras
|
7 |
from keras.models import load_model
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Load the classification model
|
10 |
+
model = "Hugging_face_model_final.h5"
|
11 |
model = tf.keras.models.load_model(model)
|
12 |
|
13 |
# Load the mineral detection model
|
14 |
+
mineral_detection_model = tf.keras.models.load_model("mineral_detection_model_Final_4_18_2024.h5")
|
15 |
|
16 |
# Define the class labels
|
17 |
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
|
|
|
22 |
'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
|
23 |
'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
|
24 |
}
|
25 |
+
# Function to preprocess the image for mineral detection
|
26 |
def preprocess_image_detection(img_array):
|
27 |
if img_array is None:
|
28 |
return None
|
|
|
32 |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
33 |
return img_array
|
34 |
|
35 |
+
# Function to preprocess the image for classification
|
36 |
def preprocess_image_classification(img_array):
|
37 |
if img_array is None:
|
38 |
return None
|
39 |
+
img = (img_array * 255).astype(np.uint8) # Convert back to uint8
|
40 |
+
img_array = cv2.resize(img, (224, 224)) # Resize to 224x224
|
41 |
img_array = img_array.astype(np.uint8)
|
42 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
43 |
return img_array
|
44 |
|
45 |
+
# Define the function to detect if the input is a mineral
|
46 |
def detect_mineral(image):
|
47 |
if image is not None:
|
48 |
image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
|
|
|
60 |
# Handle the case where no image is provided
|
61 |
return "No image provided."
|
62 |
|
63 |
+
# Define the function to make predictions
|
64 |
def classify_image(image):
|
65 |
# Check if the input is a mineral
|
66 |
is_mineral = detect_mineral(image)
|
67 |
if not is_mineral:
|
68 |
return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", ""
|
69 |
|
70 |
+
# Preprocess the image for classification
|
71 |
image = preprocess_image_classification(np.array(image))
|
72 |
if image is None:
|
73 |
return "Error preprocessing image.", "", ""
|
74 |
|
75 |
+
# Make prediction
|
76 |
prediction = model.predict(image)
|
77 |
class_idx = np.argmax(prediction)
|
78 |
prediction_scores = prediction[0]
|
79 |
|
80 |
+
# Convert prediction scores to percentages
|
81 |
prediction_scores_percentages = [f"{score * 100:.2f}%" for score in prediction_scores]
|
82 |
|
83 |
# Get the predicted class name and key facts
|
|
|
87 |
|
88 |
return predicted_class_name, predicted_scores, mineral_key_facts
|
89 |
|
|
|
|
|
90 |
app_title = "Mineral Identification using AI"
|
91 |
app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."
|
92 |
|
93 |
+
with gr.Blocks(
|
94 |
+
title=app_title,
|
95 |
+
css=".gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;}",
|
96 |
+
theme=gr.themes.Monochrome(),
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
) as demo:
|
106 |
+
# Your existing code for creating the interface components
|
107 |
with gr.Row():
|
108 |
image_input = gr.Image(elem_id="image_input", type="pil")
|
109 |
output_components = [
|
|
|
113 |
]
|
114 |
image_button = gr.Button("Classify Mineral")
|
115 |
image_button.click(classify_image, inputs=image_input, outputs=output_components)
|
116 |
+
demo.launch(auth=("admin", "pass1234"),auth_message="Welcome To Mineral Identification App.")
|