Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
repo_id = "methestrikerx100/Mineral_Identifcation_Project"
|
9 |
+
filename = "Deployment.h5"
|
10 |
+
|
11 |
+
# Download the model file
|
12 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
model = tf.keras.models.load_model(model_path)
|
16 |
+
|
17 |
+
# Define the class labels
|
18 |
+
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
|
19 |
+
|
20 |
+
# Define the function to make predictions
|
21 |
+
def classify_image(image):
|
22 |
+
# Preprocess the image
|
23 |
+
image = np.array(image)
|
24 |
+
image = Image.fromarray(image.astype(np.uint8), 'RGB')
|
25 |
+
image = image.resize((224, 224))
|
26 |
+
image = np.array(image) / 255.0
|
27 |
+
image = np.expand_dims(image, axis=0)
|
28 |
+
|
29 |
+
# Make prediction
|
30 |
+
prediction = model.predict(image)
|
31 |
+
class_idx = np.argmax(prediction)
|
32 |
+
prediction_scores = prediction[0]
|
33 |
+
|
34 |
+
# Convert prediction scores to percentages
|
35 |
+
prediction_scores_percentages = [f"{score * 100:.2f}%" for score in prediction_scores]
|
36 |
+
|
37 |
+
# Create formatted output strings
|
38 |
+
predicted_class_name = class_labels[class_idx]
|
39 |
+
predicted_scores = "\n".join([f"{label}: {score}" for label, score in zip(class_labels, prediction_scores_percentages)])
|
40 |
+
|
41 |
+
return predicted_class_name, predicted_scores
|
42 |
+
|
43 |
+
# Create the Gradio interface
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
with gr.Row():
|
46 |
+
image_input = gr.Image(elem_id="image_input", type="pil")
|
47 |
+
output_components = [
|
48 |
+
gr.Textbox(elem_id="predicted_class_name"),
|
49 |
+
gr.Textbox(elem_id="predicted_scores", lines=5)
|
50 |
+
]
|
51 |
+
image_button = gr.Button("Classify Image")
|
52 |
+
image_button.click(classify_image, inputs=image_input, outputs=output_components)
|
53 |
+
demo.launch(share=True)
|