methestrikerx100 commited on
Commit
a16ea28
·
verified ·
1 Parent(s): 5a52f40

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -29
app.py CHANGED
@@ -6,14 +6,19 @@ import gradio as gr
6
  from tensorflow import keras
7
  from keras.models import load_model
8
 
9
- # Load the classification model
10
- mineral_classification_model = "Hugging_face_model_final.h5"
11
- mineral_classification_model = tf.keras.models.load_model(mineral_classification_model)
 
 
 
 
 
12
 
13
  # Load the mineral detection model
14
  mineral_detection_model = tf.keras.models.load_model("mineral_detection_model_Final_4_18_2024.h5")
15
 
16
- # the class labels
17
  class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
18
  mineral_facts = {
19
  'biotite': "Hardness: 2.5-3\nMagnetism: None\nDensity: 2.7-3.3 g/cm³\nColors: Black, brown, green\nDescription: A phyllosilicate mineral of the mica group with a distinctive platy structure.",
@@ -22,8 +27,7 @@ mineral_facts = {
22
  'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
23
  'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
24
  }
25
-
26
- # function to preprocess the image for mineral detection
27
  def preprocess_image_detection(img_array):
28
  if img_array is None:
29
  return None
@@ -33,7 +37,7 @@ def preprocess_image_detection(img_array):
33
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
34
  return img_array
35
 
36
- # function to preprocess the image for classification
37
  def preprocess_image_classification(img_array):
38
  if img_array is None:
39
  return None
@@ -43,46 +47,60 @@ def preprocess_image_classification(img_array):
43
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
44
  return img_array
45
 
46
- # function to detect if the input is a mineral
47
  def detect_mineral(image):
48
  if image is not None:
49
  image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
50
- image = image.resize((150, 150)) # Resize to 150x150
 
 
51
  image = np.array(image) / 255.0
52
- image = np.expand_dims(image, axis=0) # Add batch dimension
53
-
54
  # Make prediction
55
  prediction = mineral_detection_model.predict(image)
56
  is_mineral = prediction[0][0] < 0.5 # Assuming binary classification
57
  return is_mineral
58
  else:
 
59
  return "No image provided."
60
 
61
- # function to make predictions for mineral classification
62
  def classify_image(image):
63
  # Check if the input is a mineral
64
  is_mineral = detect_mineral(image)
65
  if not is_mineral:
66
- return "Input is not a Microscopic mineral thin section. Please insert a mineral thin section.", "", ""
67
 
68
  # Preprocess the image for classification
69
  image = preprocess_image_classification(np.array(image))
70
  if image is None:
71
  return "Error preprocessing image.", "", ""
72
 
73
- # Make prediction
74
- prediction = mineral_classification_model.predict(image)
75
- class_idx = np.argmax(prediction)
76
-
77
- prediction_scores = prediction[0]
78
- prediction_scores_percentages = [f"{score * 100:.2f}%" for score in prediction_scores]
79
 
 
 
 
80
  predicted_class_name = class_labels[class_idx]
81
- predicted_scores = "\n".join([f"{label}: {score}" for label, score in zip(class_labels, prediction_scores_percentages)])
 
 
 
 
 
 
82
  mineral_key_facts = mineral_facts.get(predicted_class_name, "No key facts available for this mineral.")
83
 
84
  return predicted_class_name, predicted_scores, mineral_key_facts
85
 
 
 
 
 
 
 
86
  DESCRIPTION = '''
87
  <div>
88
  <h1 style="text-align: center;">Microscopic Mineral Identification App</h1>
@@ -92,11 +110,11 @@ DESCRIPTION = '''
92
  </div>
93
  '''
94
 
95
- # Welcome Message function
 
96
  def welcome(name):
97
  return f"Welcome to Gradio, {name}!"
98
 
99
- # Custom JavaScript for an animation when opening the app
100
  js = """
101
  function createGradioAnimation() {
102
  var container = document.createElement('div');
@@ -105,6 +123,7 @@ function createGradioAnimation() {
105
  container.style.fontWeight = 'bold';
106
  container.style.textAlign = 'center';
107
  container.style.marginBottom = '20px';
 
108
  var text = 'Welcome to Gradio!';
109
  for (var i = 0; i < text.length; i++) {
110
  (function(i){
@@ -113,36 +132,50 @@ function createGradioAnimation() {
113
  letter.style.opacity = '0';
114
  letter.style.transition = 'opacity 0.5s';
115
  letter.innerText = text[i];
 
116
  container.appendChild(letter);
 
117
  setTimeout(function() {
118
  letter.style.opacity = '1';
119
  }, 50);
120
  }, i * 250);
121
  })(i);
122
  }
 
123
  var gradioContainer = document.querySelector('.gradio-container');
124
  gradioContainer.insertBefore(container, gradioContainer.firstChild);
 
125
  return 'Animation created';
126
  }
127
  """
128
 
 
129
  app_title = "Mineral Identification using AI"
130
  app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."
131
 
132
  custom_css = """
133
  .gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;}
 
 
134
  #title-container {
135
- display: flex; align-items: center; justify-content: center; margin-bottom: 20px;
 
 
 
136
  }
 
137
  #app-title {
138
  margin-right: 20px; /* Adjust the spacing between the title and logo */
139
  }
 
140
  #logo-img {
141
- width: 50px; /* Adjust the logo size */
142
  height: 50px;
143
  }
 
144
  """
145
 
 
146
  with gr.Blocks(
147
  title=app_title,
148
  css=custom_css,
@@ -151,20 +184,25 @@ with gr.Blocks(
151
  ) as demo:
152
  gr.Markdown(DESCRIPTION)
153
 
154
- # Create interface components
155
  with gr.Row():
156
  image_input = gr.Image(elem_id="image_input", type="pil")
157
  output_components = [
158
  gr.Textbox(label="Mineral Name", elem_id="predicted_class_name"),
159
  gr.Textbox(label="Prediction Scores of Model", elem_id="predicted_scores", lines=5),
160
- gr.Textbox(label="Key Facts About Mineral", elem_id="mineral_key_facts", lines=8),
161
  ]
162
  image_button = gr.Button("Classify Mineral")
163
  image_button.click(classify_image, inputs=image_input, outputs=output_components)
164
 
 
 
 
 
165
  gr.Examples(
166
- examples=["Gradio examples/Biotite1.jpg", "Gradio examples/Biotite2.jpg", "Gradio examples/Olivine1.jpg", "Gradio examples/Plagioclase1.jpg"],
167
  inputs=image_input,
168
- )
169
 
170
- demo.launch(auth_message="Welcome to the Mineral Identification App.")
 
 
6
  from tensorflow import keras
7
  from keras.models import load_model
8
 
9
+ # Load the CNN feature extractor model
10
+ from tensorflow.keras.models import load_model
11
+ loaded_feature_extractor = load_model("feature_extractor_model")
12
+
13
+ # Load the SVM model
14
+ import pickle
15
+ with open("svm_model.pkl", 'rb') as file:
16
+ loaded_svm_model = pickle.load(file)
17
 
18
  # Load the mineral detection model
19
  mineral_detection_model = tf.keras.models.load_model("mineral_detection_model_Final_4_18_2024.h5")
20
 
21
+ # Define the class labels
22
  class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
23
  mineral_facts = {
24
  'biotite': "Hardness: 2.5-3\nMagnetism: None\nDensity: 2.7-3.3 g/cm³\nColors: Black, brown, green\nDescription: A phyllosilicate mineral of the mica group with a distinctive platy structure.",
 
27
  'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
28
  'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
29
  }
30
+ # Function to preprocess the image for mineral detection
 
31
  def preprocess_image_detection(img_array):
32
  if img_array is None:
33
  return None
 
37
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
38
  return img_array
39
 
40
+ # Function to preprocess the image for classification
41
  def preprocess_image_classification(img_array):
42
  if img_array is None:
43
  return None
 
47
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
48
  return img_array
49
 
50
+ # Define the function to detect if the input is a mineral
51
  def detect_mineral(image):
52
  if image is not None:
53
  image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
54
+ image = np.array(image)
55
+ image = Image.fromarray(image.astype(np.uint8), 'RGB')
56
+ image = image.resize((150, 150)) # Assuming the model expects 150x150 images
57
  image = np.array(image) / 255.0
58
+ image = np.expand_dims(image, axis=0)
59
+
60
  # Make prediction
61
  prediction = mineral_detection_model.predict(image)
62
  is_mineral = prediction[0][0] < 0.5 # Assuming binary classification
63
  return is_mineral
64
  else:
65
+ # Handle the case where no image is provided
66
  return "No image provided."
67
 
68
+ # Define the function to make predictions
69
  def classify_image(image):
70
  # Check if the input is a mineral
71
  is_mineral = detect_mineral(image)
72
  if not is_mineral:
73
+ return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", ""
74
 
75
  # Preprocess the image for classification
76
  image = preprocess_image_classification(np.array(image))
77
  if image is None:
78
  return "Error preprocessing image.", "", ""
79
 
80
+ # Extract features using the loaded CNN feature extractor
81
+ image_features = loaded_feature_extractor.predict(image)
 
 
 
 
82
 
83
+ # Make prediction using the loaded SVM model
84
+ predicted_label = loaded_svm_model.predict(image_features)
85
+ class_idx = predicted_label[0]
86
  predicted_class_name = class_labels[class_idx]
87
+
88
+ # Get prediction scores for all classes
89
+ decision_values = loaded_svm_model.decision_function(image_features)
90
+ prediction_scores = [f"{label}: {score:.4f}" for label, score in zip(class_labels, decision_values[0])]
91
+ predicted_scores = "\n".join(prediction_scores)
92
+
93
+ # Get the mineral key facts
94
  mineral_key_facts = mineral_facts.get(predicted_class_name, "No key facts available for this mineral.")
95
 
96
  return predicted_class_name, predicted_scores, mineral_key_facts
97
 
98
+
99
+
100
+
101
+
102
+
103
+
104
  DESCRIPTION = '''
105
  <div>
106
  <h1 style="text-align: center;">Microscopic Mineral Identification App</h1>
 
110
  </div>
111
  '''
112
 
113
+
114
+ # Welcome Message
115
  def welcome(name):
116
  return f"Welcome to Gradio, {name}!"
117
 
 
118
  js = """
119
  function createGradioAnimation() {
120
  var container = document.createElement('div');
 
123
  container.style.fontWeight = 'bold';
124
  container.style.textAlign = 'center';
125
  container.style.marginBottom = '20px';
126
+
127
  var text = 'Welcome to Gradio!';
128
  for (var i = 0; i < text.length; i++) {
129
  (function(i){
 
132
  letter.style.opacity = '0';
133
  letter.style.transition = 'opacity 0.5s';
134
  letter.innerText = text[i];
135
+
136
  container.appendChild(letter);
137
+
138
  setTimeout(function() {
139
  letter.style.opacity = '1';
140
  }, 50);
141
  }, i * 250);
142
  })(i);
143
  }
144
+
145
  var gradioContainer = document.querySelector('.gradio-container');
146
  gradioContainer.insertBefore(container, gradioContainer.firstChild);
147
+
148
  return 'Animation created';
149
  }
150
  """
151
 
152
+
153
  app_title = "Mineral Identification using AI"
154
  app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."
155
 
156
  custom_css = """
157
  .gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;}
158
+
159
+
160
  #title-container {
161
+ display: flex;
162
+ align-items: center;
163
+ justify-content: center;
164
+ margin-bottom: 20px;
165
  }
166
+
167
  #app-title {
168
  margin-right: 20px; /* Adjust the spacing between the title and logo */
169
  }
170
+
171
  #logo-img {
172
+ width: 50px; /* Adjust the logo size as needed */
173
  height: 50px;
174
  }
175
+
176
  """
177
 
178
+
179
  with gr.Blocks(
180
  title=app_title,
181
  css=custom_css,
 
184
  ) as demo:
185
  gr.Markdown(DESCRIPTION)
186
 
187
+ # Your existing code for creating the interface components
188
  with gr.Row():
189
  image_input = gr.Image(elem_id="image_input", type="pil")
190
  output_components = [
191
  gr.Textbox(label="Mineral Name", elem_id="predicted_class_name"),
192
  gr.Textbox(label="Prediction Scores of Model", elem_id="predicted_scores", lines=5),
193
+ gr.Textbox(label="Key Facts About Mineral", elem_id="mineral_key_facts", lines=8)
194
  ]
195
  image_button = gr.Button("Classify Mineral")
196
  image_button.click(classify_image, inputs=image_input, outputs=output_components)
197
 
198
+ with gr.Row():
199
+ gr.Textbox(label="Mineral Detection", elem_id="mineral_detection_output", lines=3)
200
+ gr.Textbox(label="Mineral Classification", elem_id="mineral_classification_output", lines=3)
201
+ gr.Textbox(label="Mineral Key Facts", elem_id="mineral_key_facts_output", lines=8)
202
  gr.Examples(
203
+ examples=[r"C:\Users\nanom\OneDrive\Desktop\Gradio UI\pixlr-image-generator-29d31d6c-51c8-48ac-a157-d893fe98dec0.png"],
204
  inputs=image_input,
205
+
206
 
207
+ )
208
+ demo.launch( auth_message="Welcome To Mineral Identification App.")