Spaces:
Running
Running
fix jit 2
Browse files
app.py
CHANGED
@@ -8,15 +8,16 @@ import faiss
|
|
8 |
|
9 |
|
10 |
# Init similarity search AI model and processor
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
traced_dino_v2_model = torch.jit.trace(dino_v2_model, sample_input["pixel_values"])
|
20 |
|
21 |
|
22 |
def process_image(image):
|
@@ -49,12 +50,10 @@ def process_image(image):
|
|
49 |
|
50 |
# Extract the features from the uploaded image
|
51 |
with torch.no_grad():
|
52 |
-
inputs =
|
53 |
-
torch_device
|
54 |
-
)
|
55 |
|
56 |
# Use the traced model for inference
|
57 |
-
outputs =
|
58 |
|
59 |
# Normalize the features before search, whatever that means
|
60 |
embeddings = outputs.last_hidden_state
|
|
|
8 |
|
9 |
|
10 |
# Init similarity search AI model and processor
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
processor = AutoImageProcessor.from_pretrained("./dinov2-large")
|
13 |
+
model = AutoModel.from_pretrained("./dinov2-large")
|
14 |
+
model.config.return_dict = False # Set return_dict to False for JIT tracing
|
15 |
+
model.to(device)
|
16 |
|
17 |
+
# Prepare an example input for tracing
|
18 |
+
example_input = torch.rand(1, 3, 224, 224).to(device) # Adjust size if needed
|
19 |
+
traced_model = torch.jit.trace(model, example_input)
|
20 |
+
traced_model = traced_model.to(device)
|
|
|
21 |
|
22 |
|
23 |
def process_image(image):
|
|
|
50 |
|
51 |
# Extract the features from the uploaded image
|
52 |
with torch.no_grad():
|
53 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
|
|
54 |
|
55 |
# Use the traced model for inference
|
56 |
+
outputs = traced_model(**inputs)
|
57 |
|
58 |
# Normalize the features before search, whatever that means
|
59 |
embeddings = outputs.last_hidden_state
|