metinbarut commited on
Commit
5fb066c
·
verified ·
1 Parent(s): 4f0d33a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+
4
+ def get_sentiment(sentences):
5
+ bert_dict = {}
6
+ vectors = tokenizer(sentences, padding = True, max_length = 65, return_tensors='pt').to(device)
7
+ outputs = bert_model(**vectors).logits
8
+ probs = torch.nn.functional.softmax(outputs, dim = 1)
9
+ for prob in probs:
10
+ bert_dict['neg'] = round(prob[0].item(), 3)
11
+ bert_dict['neu'] = round(prob[1].item(), 3)
12
+ bert_dict['pos'] = round(prob[2].item(), 3)
13
+ print (bert_dict)
14
+
15
+ MODEL_NAME = 'RashidNLP/Finance-Sentiment-Classification'
16
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
+
18
+ bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device)
19
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
20
+
21
+ get_sentiment(["The stock market will struggle until debt ceiling is increased", "ChatGPT is boosting Microsoft's search engine market share"])
22
+