Spaces:
Build error
Build error
File size: 4,142 Bytes
247dc37 a5bd089 247dc37 a5bd089 247dc37 a5bd089 247dc37 46fcc2f a5bd089 247dc37 63e4f49 247dc37 a5bd089 715f3b0 a5bd089 46fcc2f 29afbe3 a5bd089 247dc37 46fcc2f 247dc37 46fcc2f 03507e5 247dc37 a5bd089 03507e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
import gradio as gr
from phate import PHATEAE
from funcs.som import ClusterSOM
from funcs.processor import process_data
from funcs.plot_func import plot_sensor_data_from_json
from funcs.dataloader import BaseDataset2, read_json_files
DEVICE = torch.device("cpu")
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
reducer10d.load('models/r10d_2.pth')
cluster_som = ClusterSOM()
cluster_som.load("models/cluster_som2.pkl")
# ml inference
def get_som_mp4(file, slice_select=1, reducer=reducer10d, cluster=cluster_som):
try:
train_x, train_y = read_json_files(file)
except:
train_x, train_y = read_json_files(file.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
# prediction = cluster_som.predict(embedding10d)
fig = cluster.plot_activation_v2(embedding10d, slice_select)
return fig
with gr.Blocks(title='Cabasus') as cabasus_sensor:
title = gr.Markdown("<h2><center>Data gathering and processing</center></h2>")
with gr.Tab("Convert"):
with gr.Row():
csv_file_box = gr.File(label='Upload CSV File')
with gr.Column():
processed_file_box = gr.File(label='Processed CSV File')
json_file_box = gr.File(label='Generated Json file')
with gr.Row():
slice_size_slider = gr.Slider(minimum=16, maximum=512, step=1, value=64, label="Slice Size", visible=False)
sample_rate = gr.Slider(minimum=1, maximum=199, step=1, value=20, label="Sample rate", visible=False)
with gr.Row():
window_size_slider = gr.Slider(minimum=0, maximum=100, step=2, value=10, label="Window Size", visible=False)
repeat_process = gr.Button('Restart process', visible=False)
with gr.Row():
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
slice_slider = gr.Slider(minimum=1, maximum=300, label='Current slice', step=1)
with gr.Row():
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
with gr.Row():
plot_slice_leg = gr.Plot(label="Sliced Signal Plot")
get_all_slice = gr.Plot(label="Real Signal Plot")
som_create = gr.Button('generate som')
with gr.Row():
som_figures = gr.Plot(label="som activations")
slices_per_leg = gr.Textbox(label="Number of slices found per LEG")
csv_file_box.change(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice])
leg_dropdown.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice])
repeat_process.click(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice])
slice_slider.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice])
som_create.click(get_som_mp4, inputs=[json_file_box, slice_slider], outputs=[som_figures])
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)
|