Spaces:
Build error
Build error
File size: 11,375 Bytes
f9e67d5 247dc37 f9e67d5 a5bd089 247dc37 611742b 247dc37 a5bd089 247dc37 7a69981 247dc37 7a69981 247dc37 f9e67d5 7a69981 f9e67d5 7a69981 f9e67d5 d77c82e 247dc37 7a69981 d77c82e 247dc37 7a69981 d77c82e 247dc37 f9e67d5 7a69981 f9e67d5 d77c82e 7a69981 d77c82e 247dc37 0231841 a5bd089 611742b a5bd089 247dc37 46fcc2f d77c82e 7a69981 d77c82e 73e4be8 d377ed0 73e4be8 a5bd089 247dc37 63e4f49 247dc37 d377ed0 a5bd089 5124a31 a5bd089 73e4be8 a5bd089 46fcc2f 73e4be8 d377ed0 46fcc2f 611742b d77c82e 46fcc2f 7a91765 03507e5 d77c82e 247dc37 df766c6 247dc37 611742b 247dc37 df766c6 247dc37 0231841 d77c82e 611742b a5bd089 03507e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import csv
import json
import torch
import numpy as np
import gradio as gr
from phate import PHATEAE
from funcs.som import ClusterSOM
from funcs.tools import numpy_to_native
from funcs.processor import process_data
from funcs.plot_func import plot_sensor_data_from_json
from funcs.dataloader import BaseDataset2, read_json_files
DEVICE = torch.device("cpu")
reducer10d = PHATEAE(epochs=30, n_components=10, lr=.0001, batch_size=128, t='auto', knn=8, relax=True, metric='euclidean')
reducer10d.load('models/r10d_6.pth')
cluster_som = ClusterSOM()
cluster_som.load("models/cluster_som6.pkl")
def map_som2animation(som_value):
mapping = {
2: 0, # walk
1: 1, # trot
3: 2, # gallop
5: 3, # idle
4: 3, # other
-1:3, #other
}
return mapping.get(som_value, None)
# def map_som2animation_v2(som_value):
# mapping = {
# versammelter_trab: center of SOM-1,
# arbeits-trab: south-east od SOM-1,
# mittels-trab: North of SOM-1,
# starker-trab: North-west of SOM1,
# starker-schritt:
# }
# return mapping.get(som_value, None)
def deviation_scores(tensor_data, scale=50):
if len(tensor_data) < 5:
raise ValueError("The input tensor must have at least 5 elements.")
# Extract the side values and reference value from the input tensor
side_values = tensor_data[-5:-1].numpy()
reference_value = tensor_data[-1].item()
# Calculate the absolute differences between the side values and the reference
absolute_differences = np.abs(side_values - reference_value)
# Check for zero division
if np.sum(absolute_differences) == 0:
# All side values are equal to the reference, so their deviation scores are 0
return int(reference_value/20*32768), [0, 0, 0, 0]
# Calculate the deviation scores for each side value
scores = absolute_differences * scale
# Clip the scores between 0 and 1
clipped_scores = np.clip(scores, 0, 1)
return int(reference_value/20*32768), clipped_scores.tolist()
def process_som_data(data, prediction):
processed_data = []
for i in range(0, len(data)):
TS, scores_list = deviation_scores(data[i][0])
# If TS is missing (None), interpolate it using surrounding values
if TS is None:
if i > 0 and i < len(data) - 1:
prev_TS = processed_data[-1][1]
next_TS = deviation_scores(data[i + 1][0])[0]
TS = (prev_TS + next_TS) // 2
elif i > 0:
TS = processed_data[-1][1] # Use the previous TS value
else:
TS = 0 # Default to 0 if no surrounding values are available
# Set Gait, State, and Condition
#0-walk 1-trot 2-gallop 3-idle
gait = map_som2animation(prediction[0][0])
state = 0
condition = 0
# Calculate Shape, Color, and Danger values
shape_values = scores_list
color_values = scores_list
danger_values = [1 if score == 1 else 0 for score in scores_list]
# Create a row with the required format
row = [gait, TS, state, condition] + shape_values + color_values + danger_values
processed_data.append(row)
return processed_data
def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_slider, reducer=reducer10d, cluster=cluster_som):
processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box = process_data(csv_file_box, slice_size_slider, sample_rate, window_size_slider)
try:
if json_file_box is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None
train_x, train_y = read_json_files(json_file_box)
except:
if json_file_box.name is None:
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, None, None
train_x, train_y = read_json_files(json_file_box.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
# retrieve the prediction and get the animation
prediction = cluster_som.predict(embedding10d)
processed_data = process_som_data(data,prediction)
# Write the processed data to a CSV file
header = ['Gait', 'TS', 'State', 'Condition', 'Shape1', 'Shape2', 'Shape3', 'Shape4', 'Color1', 'Color2', 'Color3', 'Color4', 'Danger1', 'Danger2', 'Danger3', 'Danger4']
with open('animation_table.csv', 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(header)
csv_writer.writerows(processed_data)
# os.system('curl -X POST -F "csv_file=@animation_table.csv" https://metric-space.ngrok.io/generate --output animation.mp4')
# prediction = cluster_som.predict(embedding10d)
som_video = cluster.plot_activation(embedding10d)
som_video.write_videofile('som_sequence.mp4')
# return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', 'animation.mp4'
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
# ml inference
def get_som_mp4(file, slice_select, reducer=reducer10d, cluster=cluster_som):
try:
train_x, train_y = read_json_files(file)
except:
train_x, train_y = read_json_files(file.name)
# Convert tensors to numpy arrays if necessary
if isinstance(train_x, torch.Tensor):
train_x = train_x.numpy()
if isinstance(train_y, torch.Tensor):
train_y = train_y.numpy()
# load the time series slices of the data 4*3*2*64 (feeds+axis*sensor*samples) + 5 for time diff
data = BaseDataset2(train_x.reshape(len(train_x), -1) / 32768, train_y)
#compute the 10 dimensional embeding vector
embedding10d = reducer.transform(data)
fig = cluster.plot_activation_v2(embedding10d, slice_select)
return fig
def attach_label_to_json(json_file, label_text):
# Read the JSON file
try:
with open(json_file, "r") as f:
slices = json.load(f)
except:
with open(json_file.name, "r") as f:
slices = json.load(f)
slices['label'] = label_text
with open(f'manual_labelled_{os.path.basename(json_file.name)}', "w") as f:
json.dump(numpy_to_native(slices), f, indent=2)
return f'manual_labelled_{os.path.basename(json_file.name)}'
with gr.Blocks(title='Cabasus') as cabasus_sensor:
title = gr.Markdown("<h2><center>Data gathering and processing</center></h2>")
with gr.Tab("Convert"):
with gr.Row():
csv_file_box = gr.File(label='Upload CSV File')
with gr.Column():
processed_file_box = gr.File(label='Processed CSV File')
json_file_box = gr.File(label='Generated Json file')
with gr.Row():
animation = gr.Video(label='animation')
activation_video = gr.Video(label='activation channels')
with gr.Row():
real_video = gr.Video(label='real video')
trend_graph = gr.Video(label='trend graph')
plot_box_leg = gr.Plot(label="Filtered Signal Plot")
slice_slider = gr.Slider(minimum=1, maximum=300, label='Slice select', step=1)
som_create = gr.Button('generate som')
som_figures = gr.Plot(label="som activations")
with gr.Row():
slice_size_slider = gr.Slider(minimum=16, maximum=512, step=1, value=64, label="Slice Size", visible=False)
sample_rate = gr.Slider(minimum=1, maximum=199, step=1, value=20, label="Sample rate", visible=False)
with gr.Row():
window_size_slider = gr.Slider(minimum=0, maximum=100, step=2, value=10, label="Window Size", visible=False)
repeat_process = gr.Button('Restart process', visible=False)
with gr.Row():
leg_dropdown = gr.Dropdown(choices=['GZ1', 'GZ2', 'GZ3', 'GZ4'], label='select leg', value='GZ1')
with gr.Row():
get_all_slice = gr.Plot(label="Real Signal Plot")
plot_box_overlay = gr.Plot(label="Overlay Signal Plot")
with gr.Row():
plot_slice_leg = gr.Plot(label="Sliced Signal Plot", visible=False)
with gr.Row():
slice_json_box = gr.File(label='Slice json file')
with gr.Column():
label_name = gr.Textbox(label="enter the label name")
button_label_Add = gr.Button('attach label')
slice_json_label_box = gr.File(label='Slice json labelled file')
slices_per_leg = gr.Textbox(label="Debug information")
# csv_file_box.change(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
# outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
leg_dropdown.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
repeat_process.click(process_data, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box])
slice_slider.change(plot_sensor_data_from_json, inputs=[json_file_box, leg_dropdown, slice_slider],
outputs=[plot_box_leg, plot_slice_leg, get_all_slice, slice_json_box, plot_box_overlay])
som_create.click(get_som_mp4, inputs=[json_file_box, slice_slider], outputs=[som_figures])
#redoing the whole calculation with the file loading
csv_file_box.change(get_som_mp4_v2, inputs=[csv_file_box, slice_size_slider, sample_rate, window_size_slider],
outputs=[processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box,
activation_video, animation])
button_label_Add.click(attach_label_to_json, inputs=[slice_json_box, label_name], outputs=[slice_json_label_box])
cabasus_sensor.queue(concurrency_count=2).launch(debug=True)
|