File size: 4,321 Bytes
a5bd089
 
 
46fcc2f
a5bd089
 
 
 
46fcc2f
a5bd089
03507e5
a5bd089
 
 
 
 
 
 
 
 
 
 
46fcc2f
 
 
a5bd089
 
 
46fcc2f
a5bd089
 
 
46fcc2f
 
 
a5bd089
46fcc2f
a5bd089
 
 
46fcc2f
a5bd089
46fcc2f
 
 
 
 
 
 
 
 
a5bd089
46fcc2f
 
a5bd089
 
 
 
 
 
80be153
a5bd089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import matplotlib

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

matplotlib.use('Agg')
plt.style.use('ggplot')

def plot_sensor_data_from_json(json_file, sensor, slice_select=1):
    # Read the JSON file
    try:
        with open(json_file, "r") as f:
            slices = json.load(f)
    except:
        with open(json_file.name, "r") as f:
            slices = json.load(f)

    # Concatenate the slices and create a new timestamp series with 20ms intervals
    timestamps = []
    sensor_data = []
    slice_item = []
    temp_end = 0
    for slice_count, slice_dict in enumerate(slices):
        start_timestamp = slice_dict["timestamp"]
        slice_length = len(slice_dict[sensor])

        slice_timestamps = [start_timestamp + 20 * i for i in range(temp_end, slice_length + temp_end)]
        timestamps.extend(slice_timestamps)
        sensor_data.extend(slice_dict[sensor])

        temp_end += slice_length
        slice_item.extend([slice_count+1]*len(slice_timestamps))

    # Create a DataFrame with the sensor data
    data = pd.DataFrame({sensor: sensor_data, 'slice selection': slice_item, 'time': timestamps})

    # Plot the sensor data
    fig, ax = plt.subplots(figsize=(12, 6))
    ax = plt.plot(data['time'].to_list(), data[sensor].to_list())

    df_temp = data[data['slice selection'] == int(slice_select)].reset_index()
    y = [np.NaN]*((int(slice_select)-1)*len(df_temp[sensor].to_list())) + df_temp[sensor].to_list() + [np.NaN]*((len(slices) - int(slice_select))*len(df_temp[sensor].to_list()))
    x = data['time'].to_list()
    ax = plt.plot(x, y, '-')
    
    plt.xlabel("Timestamp")
    plt.ylabel(sensor)
    plt.legend()
    plt.tight_layout()

    fig1, ax1 = plt.subplots(figsize=(12, 6))
    ax1 = plt.plot(df_temp['time'].to_list(), df_temp[sensor].to_list())

    plt.xlabel("Timestamp")
    plt.ylabel(sensor)
    plt.legend()
    plt.tight_layout()

    return fig, fig1, None

def plot_overlay_data_from_json(json_file, sensors, use_precise_timestamp=False):
    # Read the JSON file
    with open(json_file, "r") as f:
        slices = json.load(f)

    # Set up the colormap
    cmap = plt.get_cmap('viridis')

    # Create subplots for each sensor
    fig, axs = plt.subplots(len(sensors), 1, figsize=(12, 2 * len(sensors)), sharex=True)

    for idx, sensor in enumerate(sensors):
        # Plot the overlay of the slices
        for slice_idx, slice_dict in enumerate(slices):
            slice_length = len(slice_dict[sensor])

            # Create timestamp array starting from 0 for each slice
            slice_timestamps = [20 * i for i in range(slice_length)]
            sensor_data = slice_dict[sensor]

            data = pd.DataFrame({sensor: sensor_data}, index=slice_timestamps)
            color = cmap(slice_idx / len(slices))

            axs[idx].plot(data[sensor], color=color, label=f'Slice {slice_idx + 1}')

        axs[idx].set_ylabel(sensor)

    axs[-1].set_xlabel("Timestamp")
    axs[0].legend()

    return fig

def plot_slices(original_signal, imputed_signal, precise_slice_points, normal_slice_points, sample_rate, first_timestamp):
    plt.figure(figsize=(12, 6))
    plt.plot(imputed_signal.index, imputed_signal, label="Imputed Signal")

    # Find the missing values and the predicted values
    missing_value_indices = original_signal.isna()
    missing_values = original_signal.loc[missing_value_indices]
    predicted_values = imputed_signal.loc[missing_value_indices]

    # Plot the original missing values and the predicted values as separate scatter plots
    plt.scatter(missing_values.index, missing_values, color='r', marker='x', label='Original Missing Values')
    plt.scatter(predicted_values.index, predicted_values, color='r', marker='o', label='Predicted Values')

    for index in precise_slice_points:
        plt.axvline(x=first_timestamp + (index), color='r', linestyle='--', label='Precise Slice Points' if index == precise_slice_points[0] else "")
    for index in normal_slice_points:
        plt.axvline(x=first_timestamp + (index), color='g', linestyle='-', label='Normal Slice Points' if index == normal_slice_points[0] else "")
    plt.legend()
    plt.xlabel("Time (s)")
    plt.ylabel("Signal Amplitude")
    plt.title("Imputed Signal and Slice Points")

    return True