cabasus / funcs /som.py
arcan3's picture
som name changed, placeholder added, new models added
7a69981
raw
history blame
8.21 kB
import io
import math
import pickle
import imageio
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from moviepy.editor import ImageSequenceClip
class ClusterSOM:
def __init__(self):
self.hdbscan_model = None
self.som_models = {}
self.sigma_values = {}
self.mean_values = {}
self.cluster_mapping = {}
self.embedding = None
self.dim_red_op = None
def load(self, file_path):
"""
Load a ClusterSOM model from a file.
"""
with open(file_path, "rb") as f:
model_data = pickle.load(f)
self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping = model_data[:5]
if len(model_data) > 5:
self.label_centroids, self.label_encodings = model_data[5:]
def predict(self, data, sigma_factor=1.5):
"""
Predict the cluster and BMU SOM coordinate for each sample in the data if it's inside the sigma value.
Also, predict the label and distance to the center of the label if labels are trained.
"""
results = []
for sample in data:
min_distance = float('inf')
nearest_cluster_idx = None
nearest_node = None
for i, som in self.som_models.items():
x, y = som.winner(sample)
node = som.get_weights()[x, y]
distance = np.linalg.norm(sample - node)
if distance < min_distance:
min_distance = distance
nearest_cluster_idx = i
nearest_node = (x, y)
# Check if the nearest node is within the sigma value
if min_distance <= self.mean_values[nearest_cluster_idx][nearest_node] * 1.5: # * self.sigma_values[nearest_cluster_idx][nearest_node] * sigma_factor:
if hasattr(self, 'label_centroids'):
# Predict the label and distance to the center of the label
label_idx = self.label_encodings.inverse_transform([nearest_cluster_idx - 1])[0]
label_distance = np.linalg.norm(sample - self.label_centroids[label_idx])
results.append((nearest_cluster_idx, nearest_node, label_idx, label_distance))
else:
results.append((nearest_cluster_idx, nearest_node))
else:
results.append((-1, None)) # Noise
return results
# rearranging the subplots in the closest square format
def rearrange_subplots(self, num_subplots):
# Calculate the number of rows and columns for the subplot grid
num_rows = math.isqrt(num_subplots)
num_cols = math.ceil(num_subplots / num_rows)
# Create the figure and subplots
fig, axes = plt.subplots(num_rows, num_cols, sharex=True, sharey=True)
# Flatten the axes array if it is multidimensional
if isinstance(axes, np.ndarray):
axes = axes.flatten()
# Hide any empty subplots
for i in range(num_subplots, len(axes)):
axes[i].axis('off')
return fig, axes
def plot_activation(self, data, start=None, end=None):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
if start is None:
start = 0
if end is None:
end = len(data)
images = []
for sample in tqdm(data[start:end], desc="Visualizing prediction output"):
prediction = self.predict([sample])[0]
fig, axes = self.rearrange_subplots(len(self.som_models))
# fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(sample - som._weights[x, y])
winner = som.winner(sample) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"A {som_key}", color='blue', fontweight='bold', fontsize=10)
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"A {som_key}", fontsize=10)
ax.set_xticks([])
ax.set_yticks([])
ax.grid(True, linestyle='-', linewidth=0.5)
# Create a colorbar for each frame
plt.tight_layout()
fig.subplots_adjust(wspace=0, hspace=0)
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = imageio.imread(buf)
images.append(img)
plt.close()
# Create the video using moviepy and save it as a mp4 file
video = ImageSequenceClip(images, fps=1)
return video
def plot_activation_v2(self, data, slice_select):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
try:
prediction = self.predict([data[int(slice_select)-1]])[0]
except:
prediction = self.predict([data[int(slice_select)-2]])[0]
fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for SOM {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(data[int(slice_select)-1] - som._weights[x, y])
winner = som.winner(data[int(slice_select)-1]) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"SOM {som_key}", color='blue', fontweight='bold')
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"SOM {som_key}")
ax.set_xticks(range(activation_map.shape[1]))
ax.set_yticks(range(activation_map.shape[0]))
ax.grid(True, linestyle='-', linewidth=0.5)
plt.tight_layout()
return fig