cabasus / funcs /som.py
MichaelWelsch's picture
Update funcs/som.py
302b190
import io
import math
import pickle
import imageio
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from moviepy.editor import ImageSequenceClip, VideoFileClip
class ClusterSOM:
def __init__(self):
self.hdbscan_model = None
self.som_models = {}
self.sigma_values = {}
self.mean_values = {}
self.cluster_mapping = {}
self.embedding = None
self.dim_red_op = None
def load(self, file_path):
"""
Load a ClusterSOM model from a file.
"""
with open(file_path, "rb") as f:
model_data = pickle.load(f)
self.hdbscan_model, self.som_models, self.mean_values, self.sigma_values, self.cluster_mapping = model_data[:5]
if len(model_data) > 5:
self.label_centroids, self.label_encodings = model_data[5:]
def predict(self, data, sigma_factor=2.5):
"""
Predict the cluster and BMU SOM coordinate for each sample in the data if it's inside the sigma value.
Also, predict the label and distance to the center of the label if labels are trained.
"""
results = []
for sample in data:
min_distance = float('inf')
nearest_cluster_idx = None
nearest_node = None
for i, som in self.som_models.items():
x, y = som.winner(sample)
node = som.get_weights()[x, y]
distance = np.linalg.norm(sample - node)
if distance < min_distance:
min_distance = distance
nearest_cluster_idx = i
nearest_node = (x, y)
# Check if the nearest node is within the sigma value
if min_distance <= self.mean_values[nearest_cluster_idx][nearest_node] * 1.5: # * self.sigma_values[nearest_cluster_idx][nearest_node] * sigma_factor:
if hasattr(self, 'label_centroids'):
# Predict the label and distance to the center of the label
label_idx = self.label_encodings.inverse_transform([nearest_cluster_idx - 1])[0]
label_distance = np.linalg.norm(sample - self.label_centroids[label_idx])
results.append((nearest_cluster_idx, nearest_node, label_idx, label_distance))
else:
results.append((nearest_cluster_idx, nearest_node))
else:
results.append((-1, None)) # Noise
return results
def score(self, data, midpoints=None, threshold_radius=4):
"""
Compute the score for each sample in the data based on the distance of the BMU node to the closest midpoint of the SOM grid.
:param data: The input data.
:param midpoints: A dictionary with keys as the indices of the SOMs and values as lists of midpoints on the grid for the corresponding SOMs.
:param threshold_radius: The threshold radius for score calculation.
"""
scores = []
for sample in data:
# Predict the cluster and BMU SOM coordinate for each sample in the data
result = self.predict([sample])[0]
# Check if it is not a noise
if result[0] != -1:
# The activated SOM's index and its corresponding BMU
activated_som_index, bmu = result[0], result[1]
# Get the corresponding SOM for the data point
som = self.som_models[activated_som_index]
# If specific midpoints are provided for SOMs, use them; else compute the midpoint of the SOM grid
if midpoints is not None and activated_som_index in midpoints:
specified_midpoints = midpoints[activated_som_index]
else:
specified_midpoints = [tuple((dim-1)/2 for dim in som.get_weights().shape[:2])]
# Compute the grid distances from the BMU to each midpoint and find the minimum distance
min_distance = min(np.sqrt((midpoint[0] - bmu[0])**2 + (midpoint[1] - bmu[1])**2) for midpoint in specified_midpoints)
# Compute the score as the minimum grid distance minus the threshold radius
score = min_distance - threshold_radius
scores.append(score)
else:
scores.append(None) # Noise
return scores
# rearranging the subplots in the closest square format
def rearrange_subplots(self, num_subplots):
# Calculate the number of rows and columns for the subplot grid
num_rows = math.isqrt(num_subplots)
num_cols = math.ceil(num_subplots / num_rows)
# Create the figure and subplots
fig, axes = plt.subplots(num_rows, num_cols, sharex=True, sharey=True)
# Flatten the axes array if it is multidimensional
if isinstance(axes, np.ndarray):
axes = axes.flatten()
# Hide any empty subplots
for i in range(num_subplots, len(axes)):
axes[i].axis('off')
return fig, axes
def plot_activation(self, data, start=None, end=None, times=None):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
if start is None:
start = 0
if end is None:
end = len(data)
images = []
for sample in tqdm(data[start:end], desc="Visualizing prediction output"):
prediction = self.predict([sample])[0]
fig, axes = self.rearrange_subplots(len(self.som_models))
# fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for A {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(sample - som._weights[x, y])
winner = som.winner(sample) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"A {som_key}", color='blue', fontweight='bold', fontsize=10)
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"A {som_key}", fontsize=10)
ax.set_xticks([])
ax.set_yticks([])
ax.grid(True, linestyle='-', linewidth=0.5)
# Create a colorbar for each frame
plt.tight_layout()
fig.subplots_adjust(wspace=0, hspace=0)
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = imageio.imread(buf)
images.append(img)
plt.close()
# Set default frame duration if `times` is not provided.
# if times is None:
# times = [500 for _ in range(len(images))]
# # Make sure `times` has the same length as `images`.
# times = times[1:]
# times = [int(t) for t in times]
# if len(times) != len(images):
# raise ValueError("`times` must have the same length as the number of frames.")
# # Save the images as a GIF with custom durations.
# imageio.mimsave("som_gif.gif", images, duration=[t / 1000 for t in times], loop=1)
# # Load the gif
# gif_file = "som_gif.gif"
# clip = VideoFileClip(gif_file)
# # Convert the gif to mp4
# mp4_file = "som_gif.mp4"
# clip.write_videofile(mp4_file, codec='libx264')
# # Close the clip to release resources
# clip.close()
# return "som_gif.mp4"
# Create the video using moviepy and save it as a mp4 file
video = ImageSequenceClip(images, fps=2)
return video
def plot_activation_v2(self, data, slice_select):
"""
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
"""
if len(self.som_models) == 0:
raise ValueError("SOM models not trained yet.")
prediction = self.predict([data[int(slice_select)-1]])[0]
fig, axes = plt.subplots(1, len(self.som_models), figsize=(20, 5), sharex=True, sharey=True)
fig.suptitle(f"Activation map for A {prediction[0]}, node {prediction[1]}", fontsize=16)
for idx, (som_key, som) in enumerate(self.som_models.items()):
ax = axes[idx]
activation_map = np.zeros(som._weights.shape[:2])
for x in range(som._weights.shape[0]):
for y in range(som._weights.shape[1]):
activation_map[x, y] = np.linalg.norm(data[int(slice_select)-1] - som._weights[x, y])
winner = som.winner(data[int(slice_select)-1]) # Find the BMU for this SOM
activation_map[winner] = 0 # Set the BMU's value to 0 so it will be red in the colormap
if som_key == prediction[0]: # Active SOM
im_active = ax.imshow(activation_map, cmap='viridis', origin='lower', interpolation='none')
ax.plot(winner[1], winner[0], 'r+') # Mark the BMU with a red plus sign
ax.set_title(f"A {som_key}", color='blue', fontweight='bold')
if hasattr(self, 'label_centroids'):
label_idx = self.label_encodings.inverse_transform([som_key - 1])[0]
ax.set_xlabel(f"Label: {label_idx}", fontsize=12)
else: # Inactive SOM
im_inactive = ax.imshow(activation_map, cmap='gray', origin='lower', interpolation='none')
ax.set_title(f"A {som_key}")
ax.set_xticks(range(activation_map.shape[1]))
ax.set_yticks(range(activation_map.shape[0]))
ax.grid(True, linestyle='-', linewidth=0.5)
plt.tight_layout()
return fig