arcan3 commited on
Commit
8d14b4d
·
1 Parent(s): 7d492c9

added plotly alternative to candlestick

Browse files
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -6,6 +6,7 @@ import torch
6
  import numpy as np
7
  import pandas as pd
8
  import gradio as gr
 
9
 
10
  from phate import PHATEAE
11
  from pytvlwcharts import *
@@ -204,9 +205,13 @@ def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_sli
204
 
205
  scores = cluster_som.score(embedding10d, threshold_radius=8.5)
206
  scores_df = scores_to_dataframe(scores)
207
- DailyChart = Chart(data=scores_df, width = 1360, height = 500,
208
- time_scale=TimeScaleOptions(seconds_visible=True,
209
- time_visible=True)).mark_candlestick()
 
 
 
 
210
 
211
  # Write the processed data to a CSV file
212
  header = ['Gait', 'TS', 'State', 'Condition',
@@ -224,7 +229,7 @@ def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_sli
224
  som_video = cluster.plot_activation(embedding10d)
225
  som_video.write_videofile('som_sequence.mp4')
226
 
227
- return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', 'animation.mp4', DailyChart
228
  return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
229
 
230
  # ml inference
 
6
  import numpy as np
7
  import pandas as pd
8
  import gradio as gr
9
+ import plotly.graph_objects as go
10
 
11
  from phate import PHATEAE
12
  from pytvlwcharts import *
 
205
 
206
  scores = cluster_som.score(embedding10d, threshold_radius=8.5)
207
  scores_df = scores_to_dataframe(scores)
208
+
209
+ fig = go.Figure(data=[go.Candlestick(x=scores_df['time'],
210
+ open=scores_df['open'],
211
+ high=scores_df['high'],
212
+ low=scores_df['low'],
213
+ close=scores_df['close'])])
214
+
215
 
216
  # Write the processed data to a CSV file
217
  header = ['Gait', 'TS', 'State', 'Condition',
 
229
  som_video = cluster.plot_activation(embedding10d)
230
  som_video.write_videofile('som_sequence.mp4')
231
 
232
+ return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', 'animation.mp4', fig
233
  return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
234
 
235
  # ml inference