Spaces:
Build error
Build error
added revision
Browse files- app.py +7 -3
- funcs/convertors.py +4 -1
- funcs/processor.py +2 -2
- funcs/som.py +25 -3
app.py
CHANGED
@@ -178,7 +178,7 @@ def scores_to_dataframe(scores, start_time='2022-07-01 09:15:00+05:30', start_sc
|
|
178 |
return df
|
179 |
|
180 |
def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_slider, reducer=reducer10d, cluster=cluster_som):
|
181 |
-
processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box = process_data(csv_file_box,
|
182 |
slice_size_slider,
|
183 |
sample_rate,
|
184 |
window_size_slider)
|
@@ -217,7 +217,6 @@ def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_sli
|
|
217 |
low=scores_df['low'],
|
218 |
close=scores_df['close'])])
|
219 |
|
220 |
-
|
221 |
# Write the processed data to a CSV file
|
222 |
header = ['Gait', 'TS', 'State', 'Condition',
|
223 |
'Shape1', 'Shape2', 'Shape3', 'Shape4',
|
@@ -239,8 +238,13 @@ def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_sli
|
|
239 |
# f.write(response.content)
|
240 |
|
241 |
# prediction = cluster_som.predict(embedding10d)
|
242 |
-
|
|
|
|
|
|
|
243 |
som_video.write_videofile('som_sequence.mp4')
|
|
|
|
|
244 |
|
245 |
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', 'animation.mp4', fig
|
246 |
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
|
|
|
178 |
return df
|
179 |
|
180 |
def get_som_mp4_v2(csv_file_box, slice_size_slider, sample_rate, window_size_slider, reducer=reducer10d, cluster=cluster_som):
|
181 |
+
processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, time_list = process_data(csv_file_box,
|
182 |
slice_size_slider,
|
183 |
sample_rate,
|
184 |
window_size_slider)
|
|
|
217 |
low=scores_df['low'],
|
218 |
close=scores_df['close'])])
|
219 |
|
|
|
220 |
# Write the processed data to a CSV file
|
221 |
header = ['Gait', 'TS', 'State', 'Condition',
|
222 |
'Shape1', 'Shape2', 'Shape3', 'Shape4',
|
|
|
238 |
# f.write(response.content)
|
239 |
|
240 |
# prediction = cluster_som.predict(embedding10d)
|
241 |
+
|
242 |
+
# passing the time values for each slice
|
243 |
+
|
244 |
+
som_video = cluster.plot_activation(embedding10d, times=time_list)
|
245 |
som_video.write_videofile('som_sequence.mp4')
|
246 |
+
|
247 |
+
# return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, som_video, 'animation.mp4', fig
|
248 |
|
249 |
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', 'animation.mp4', fig
|
250 |
return processed_file_box, json_file_box, slices_per_leg, plot_box_leg, plot_box_overlay, slice_slider, plot_slice_leg, get_all_slice, slice_json_box, 'som_sequence.mp4', None
|
funcs/convertors.py
CHANGED
@@ -31,6 +31,7 @@ def slice_csv_to_json(input_file, slice_size=64, min_slice_size=16, sample_rate=
|
|
31 |
|
32 |
slices = []
|
33 |
start_index = 0
|
|
|
34 |
for i, precise_slice_point in enumerate(precise_slice_points):
|
35 |
end_index = round(precise_slice_point / sample_rate)
|
36 |
if i == 0:
|
@@ -69,6 +70,8 @@ def slice_csv_to_json(input_file, slice_size=64, min_slice_size=16, sample_rate=
|
|
69 |
slice_data["timestamp"] = timestamp
|
70 |
slice_data["time_diff"] = time_diff
|
71 |
slice_data["precise_time_diff"] = precise_time_diff
|
|
|
|
|
72 |
|
73 |
if end_index - start_index < slice_size:
|
74 |
pad_size = slice_size - (end_index - start_index)
|
@@ -89,7 +92,7 @@ def slice_csv_to_json(input_file, slice_size=64, min_slice_size=16, sample_rate=
|
|
89 |
if debug:
|
90 |
plot_slices(original_data[gz_columns[0]], data[gz_columns[0]], precise_slice_points, precise_slice_points, sample_rate, data.index.values[0])
|
91 |
|
92 |
-
return 'output.json', len(slices)
|
93 |
|
94 |
|
95 |
def slice_csv_to_json_v2(input_file, slice_size=64, min_slice_size=10, sample_rate=20):
|
|
|
31 |
|
32 |
slices = []
|
33 |
start_index = 0
|
34 |
+
list_time_diff_for_activation = []
|
35 |
for i, precise_slice_point in enumerate(precise_slice_points):
|
36 |
end_index = round(precise_slice_point / sample_rate)
|
37 |
if i == 0:
|
|
|
70 |
slice_data["timestamp"] = timestamp
|
71 |
slice_data["time_diff"] = time_diff
|
72 |
slice_data["precise_time_diff"] = precise_time_diff
|
73 |
+
list_time_diff_for_activation.append(slice_data["precise_time_diff"])
|
74 |
+
|
75 |
|
76 |
if end_index - start_index < slice_size:
|
77 |
pad_size = slice_size - (end_index - start_index)
|
|
|
92 |
if debug:
|
93 |
plot_slices(original_data[gz_columns[0]], data[gz_columns[0]], precise_slice_points, precise_slice_points, sample_rate, data.index.values[0])
|
94 |
|
95 |
+
return 'output.json', len(slices), list_time_diff_for_activation
|
96 |
|
97 |
|
98 |
def slice_csv_to_json_v2(input_file, slice_size=64, min_slice_size=10, sample_rate=20):
|
funcs/processor.py
CHANGED
@@ -73,10 +73,10 @@ def process_data(input_file, slice_size=64, sample_rate=20, window_size=40, min_
|
|
73 |
# Save the resulting DataFrame to a new file
|
74 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
75 |
|
76 |
-
file, len_ = slice_csv_to_json('output.csv', slice_size, min_slice_size, sample_rate, window_size=window_size)
|
77 |
# file, len_ = slice_csv_to_json_v2('output.csv', slice_size, min_slice_size, sample_rate)
|
78 |
# get the plot automatically
|
79 |
sensor_fig, slice_fig, get_all_slice, slice_json, overlay_fig = plot_sensor_data_from_json(file, "GZ1") # with the csv file
|
80 |
# overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"])
|
81 |
|
82 |
-
return 'output.csv', file, f'num of slices found: {len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1), slice_fig, get_all_slice, slice_json
|
|
|
73 |
# Save the resulting DataFrame to a new file
|
74 |
data.to_csv('output.csv', sep=";", na_rep="NaN", float_format="%.0f")
|
75 |
|
76 |
+
file, len_, time_list = slice_csv_to_json('output.csv', slice_size, min_slice_size, sample_rate, window_size=window_size)
|
77 |
# file, len_ = slice_csv_to_json_v2('output.csv', slice_size, min_slice_size, sample_rate)
|
78 |
# get the plot automatically
|
79 |
sensor_fig, slice_fig, get_all_slice, slice_json, overlay_fig = plot_sensor_data_from_json(file, "GZ1") # with the csv file
|
80 |
# overlay_fig = plot_overlay_data_from_json(file, ["GZ1", "GZ2", "GZ3", "GZ4"])
|
81 |
|
82 |
+
return 'output.csv', file, f'num of slices found: {len_}', sensor_fig, overlay_fig, gr.Slider.update(interactive=True, maximum=len_, minimum=1, value=1), slice_fig, get_all_slice, slice_json, time_list
|
funcs/som.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
from tqdm import tqdm
|
10 |
-
from moviepy.editor import ImageSequenceClip
|
11 |
|
12 |
class ClusterSOM:
|
13 |
def __init__(self):
|
@@ -125,7 +125,7 @@ class ClusterSOM:
|
|
125 |
|
126 |
return fig, axes
|
127 |
|
128 |
-
def plot_activation(self, data, start=None, end=None):
|
129 |
"""
|
130 |
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
|
131 |
"""
|
@@ -189,8 +189,30 @@ class ClusterSOM:
|
|
189 |
# if times is None:
|
190 |
# times = [500 for _ in range(len(images))]
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
# Create the video using moviepy and save it as a mp4 file
|
193 |
-
video = ImageSequenceClip(images, fps=
|
194 |
|
195 |
return video
|
196 |
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
from tqdm import tqdm
|
10 |
+
from moviepy.editor import ImageSequenceClip, VideoFileClip
|
11 |
|
12 |
class ClusterSOM:
|
13 |
def __init__(self):
|
|
|
125 |
|
126 |
return fig, axes
|
127 |
|
128 |
+
def plot_activation(self, data, start=None, end=None, times=None):
|
129 |
"""
|
130 |
Generate a GIF visualization of the prediction output using the activation maps of individual SOMs.
|
131 |
"""
|
|
|
189 |
# if times is None:
|
190 |
# times = [500 for _ in range(len(images))]
|
191 |
|
192 |
+
# # Make sure `times` has the same length as `images`.
|
193 |
+
# times = times[1:]
|
194 |
+
# times = [int(t) for t in times]
|
195 |
+
# if len(times) != len(images):
|
196 |
+
# raise ValueError("`times` must have the same length as the number of frames.")
|
197 |
+
|
198 |
+
# # Save the images as a GIF with custom durations.
|
199 |
+
# imageio.mimsave("som_gif.gif", images, duration=[t / 1000 for t in times], loop=1)
|
200 |
+
|
201 |
+
# # Load the gif
|
202 |
+
# gif_file = "som_gif.gif"
|
203 |
+
# clip = VideoFileClip(gif_file)
|
204 |
+
|
205 |
+
# # Convert the gif to mp4
|
206 |
+
# mp4_file = "som_gif.mp4"
|
207 |
+
# clip.write_videofile(mp4_file, codec='libx264')
|
208 |
+
|
209 |
+
# # Close the clip to release resources
|
210 |
+
# clip.close()
|
211 |
+
|
212 |
+
# return "som_gif.mp4"
|
213 |
+
|
214 |
# Create the video using moviepy and save it as a mp4 file
|
215 |
+
video = ImageSequenceClip(images, fps=2)
|
216 |
|
217 |
return video
|
218 |
|