Spaces:
Paused
Paused
Update src/deepeval/base_task.py
Browse files- src/deepeval/base_task.py +275 -273
src/deepeval/base_task.py
CHANGED
@@ -1,274 +1,276 @@
|
|
1 |
-
from abc import ABC, abstractmethod
|
2 |
-
from datasets import load_dataset
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
import openai
|
6 |
-
from peft import PeftModel
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
8 |
-
import torch
|
9 |
-
from typing import List
|
10 |
-
from datetime import datetime
|
11 |
-
load_dotenv()
|
12 |
-
HF_TOKEN=os.getenv("HF_TOKEN")
|
13 |
-
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
-
|
15 |
-
class BaseTask(ABC):
|
16 |
-
_model_cache = {} # Class-level cache for models and tokenizers
|
17 |
-
|
18 |
-
def __init__(self, dataset_repo, model_name):
|
19 |
-
self.dataset_repo = dataset_repo
|
20 |
-
self.dataset = self.load_dataset_from_hf()
|
21 |
-
|
22 |
-
device_count = torch.cuda.device_count()
|
23 |
-
if device_count > 1:
|
24 |
-
self.device = "auto"
|
25 |
-
print(f"Using {device_count} GPUs with auto config.")
|
26 |
-
elif device_count == 1:
|
27 |
-
self.device = "cuda"
|
28 |
-
print(f"Using {device_count} GPU with cuda config.")
|
29 |
-
else:
|
30 |
-
self.device = "cpu"
|
31 |
-
print("No GPU found. Using CPU.")
|
32 |
-
|
33 |
-
self.model, self.tokenizer = self.get_cached_model(model_name, self.device)
|
34 |
-
openai.api_key = OPENAI_KEY
|
35 |
-
|
36 |
-
|
37 |
-
@classmethod
|
38 |
-
def get_cached_model(cls, model_name, device):
|
39 |
-
"""Ensures the same model and tokenizer are used for every instance of subclasses."""
|
40 |
-
if model_name not in cls._model_cache:
|
41 |
-
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
42 |
-
return cls._model_cache[model_name]
|
43 |
-
|
44 |
-
@staticmethod
|
45 |
-
def load_model(model_name: str, device):
|
46 |
-
"""Loads model and tokenizer once and caches it."""
|
47 |
-
print(f"Loading model: {model_name}")
|
48 |
-
start_time = datetime.now()
|
49 |
-
model = AutoModelForCausalLM.from_pretrained(
|
50 |
-
model_name,
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
device_map=device,
|
53 |
-
token=HF_TOKEN, # Replace with actual token
|
54 |
-
)
|
55 |
-
end_time = datetime.now()
|
56 |
-
print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
57 |
-
print("Model loaded.")
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
-
return model, tokenizer
|
60 |
-
|
61 |
-
# @staticmethod
|
62 |
-
# def load_model(model_name: str, device, weight, dtype, base_model):
|
63 |
-
# """Loads model and tokenizer once and caches it."""
|
64 |
-
# print(f"Loading model: {model_name}")
|
65 |
-
# start_time = datetime.now()
|
66 |
-
# if weight == "Adapter":
|
67 |
-
# base_model_1 = AutoModelForCausalLM.from_pretrained(
|
68 |
-
# base_model,
|
69 |
-
# torch_dtype=dtype,
|
70 |
-
# device_map=device,
|
71 |
-
# token=HF_TOKEN, # Replace with actual token
|
72 |
-
# )
|
73 |
-
# model = PeftModel.from_pretrained(base_model_1, base_model)
|
74 |
-
# tokenizer = AutoTokenizer.from_pretrained(base_model)
|
75 |
-
# end_time = datetime.now()
|
76 |
-
# else:
|
77 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
78 |
-
# model_name,
|
79 |
-
# torch_dtype=dtype,
|
80 |
-
# device_map=device,
|
81 |
-
# token=HF_TOKEN, # Replace with actual token
|
82 |
-
# )
|
83 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
-
# end_time = datetime.now()
|
85 |
-
# print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
86 |
-
# print("Model loaded.")
|
87 |
-
|
88 |
-
# return model, tokenizer
|
89 |
-
|
90 |
-
|
91 |
-
def generate_response_mcqa(self, msg, max_new_tokens=1, choices: List[str]=[]):
|
92 |
-
# Ensure the tokenizer has a padding token
|
93 |
-
if self.tokenizer.pad_token is None:
|
94 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token # Use EOS token as PAD token
|
95 |
-
|
96 |
-
inputs = self.tokenizer(msg, return_tensors="pt", padding=True, truncation=True)
|
97 |
-
input_ids = inputs.input_ids
|
98 |
-
attention_mask = inputs.attention_mask
|
99 |
-
|
100 |
-
if self.model.config.pad_token_id is None:
|
101 |
-
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
102 |
-
|
103 |
-
# Get token IDs for answer choices
|
104 |
-
valid_answers = choices
|
105 |
-
valid_token_ids = [self.tokenizer.convert_tokens_to_ids(ans) for ans in valid_answers]
|
106 |
-
|
107 |
-
class MultipleChoiceLogitsProcessor:
|
108 |
-
def __call__(self, input_ids, scores):
|
109 |
-
mask = torch.full_like(scores, float("-inf"))
|
110 |
-
mask[:, valid_token_ids] = scores[:, valid_token_ids] # Allow only valid tokens
|
111 |
-
return mask
|
112 |
-
|
113 |
-
logits_processor = LogitsProcessorList([MultipleChoiceLogitsProcessor()])
|
114 |
-
|
115 |
-
output = self.model.generate(
|
116 |
-
input_ids,
|
117 |
-
attention_mask=attention_mask, # Fix: Pass attention_mask to avoid warning
|
118 |
-
max_new_tokens=max_new_tokens,
|
119 |
-
logits_processor=logits_processor
|
120 |
-
)
|
121 |
-
answer = self.tokenizer.decode(output[0][-1])
|
122 |
-
|
123 |
-
return answer
|
124 |
-
|
125 |
-
def generate_response_mcqa_multi_token(self, msg, max_new_tokens=2, choices: list = []):
|
126 |
-
"""
|
127 |
-
Handles multiple-choice questions where answers might have multiple tokens.
|
128 |
-
"""
|
129 |
-
# Ensure tokenizer has proper special tokens set
|
130 |
-
if self.tokenizer.pad_token is None:
|
131 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
132 |
-
|
133 |
-
if self.model.config.pad_token_id is None:
|
134 |
-
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
135 |
-
|
136 |
-
chat = [
|
137 |
-
{"role": "user", "content": "You are a multiple choice question-answering chatbot. Do not give an answer that is not included in the choices. Only answer with letters like A, B, C, D..."},
|
138 |
-
{"role": "assistant", "content": "I am ready to answer your questions. Feel free to ask anything.\n"},
|
139 |
-
{"role": "user", "content": f"{msg}"},
|
140 |
-
]
|
141 |
-
formatted_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
142 |
-
#print(formatted_chat)
|
143 |
-
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
144 |
-
|
145 |
-
if self.device == "auto":
|
146 |
-
input_ids = inputs.input_ids
|
147 |
-
attention_mask = inputs.attention_mask
|
148 |
-
else:
|
149 |
-
input_ids = inputs.input_ids.to(self.model.device)
|
150 |
-
attention_mask = inputs.attention_mask.to(self.model.device)
|
151 |
-
|
152 |
-
# Generate the sequence of letters starting from 'A'
|
153 |
-
letters = [chr(ord('A') + i) for i in range(len(choices))] # Create option letters A, B, C, D, E, ...
|
154 |
-
encoded_choices = [self.tokenizer.encode(letter, add_special_tokens=False) for letter in letters]
|
155 |
-
flattened_encoded_choices = [item for sublist in encoded_choices for item in sublist] # Flatten the list
|
156 |
-
#print(flattened_encoded_choices)
|
157 |
-
|
158 |
-
allowed_tokens = flattened_encoded_choices
|
159 |
-
allowed_tokens += self.get_chat_template_tokens() # Get the special chat tokens
|
160 |
-
allowed_token_ids = set(allowed_tokens) # Ensure uniqueness
|
161 |
-
|
162 |
-
# Custom LogitsProcessor to restrict generation
|
163 |
-
class RestrictToABCDLogitsProcessor(LogitsProcessor):
|
164 |
-
def __call__(self, input_ids, scores):
|
165 |
-
mask = torch.full_like(scores, float("-inf")) # Block all tokens
|
166 |
-
mask[:, list(allowed_token_ids)] = scores[:, list(allowed_token_ids)] # Allow only A, B, C, D tokens
|
167 |
-
return mask
|
168 |
-
logits_processor = LogitsProcessorList([RestrictToABCDLogitsProcessor()])
|
169 |
-
|
170 |
-
# Generate response
|
171 |
-
output = self.model.generate(
|
172 |
-
input_ids,
|
173 |
-
do_sample=True,
|
174 |
-
attention_mask=attention_mask,
|
175 |
-
max_new_tokens=max_new_tokens,
|
176 |
-
eos_token_id=self.tokenizer.eos_token_id,
|
177 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
178 |
-
temperature=0.4,
|
179 |
-
logits_processor=logits_processor,
|
180 |
-
)
|
181 |
-
generated_ids = output[0] # The generated sequence including the prompt
|
182 |
-
generated_tokens = generated_ids[len(input_ids[0]):] # Exclude the input_ids part
|
183 |
-
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
184 |
-
return generated_text
|
185 |
-
|
186 |
-
def generate_response(self, prompt: str, max_new_tokens: int = 100) -> str:
|
187 |
-
|
188 |
-
if self.tokenizer.pad_token is None:
|
189 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
190 |
-
|
191 |
-
if self.model.config.pad_token_id is None:
|
192 |
-
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
193 |
-
|
194 |
-
chat = [
|
195 |
-
{"role": "user", "content": "You are a helpful AI assistant."},
|
196 |
-
{"role": "assistant", "content": "I am here to help you with any questions you may have."},
|
197 |
-
{"role": "user", "content": prompt},
|
198 |
-
]
|
199 |
-
|
200 |
-
formatted_chat = self.tokenizer.apply_chat_template(
|
201 |
-
chat,
|
202 |
-
tokenize=False,
|
203 |
-
add_generation_prompt=True
|
204 |
-
)
|
205 |
-
|
206 |
-
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
207 |
-
|
208 |
-
if self.device == "auto":
|
209 |
-
input_ids = inputs.input_ids
|
210 |
-
attention_mask = inputs.attention_mask
|
211 |
-
else:
|
212 |
-
input_ids = inputs.input_ids.to(self.model.device)
|
213 |
-
attention_mask = inputs.attention_mask.to(self.model.device)
|
214 |
-
|
215 |
-
output = self.model.generate(
|
216 |
-
input_ids,
|
217 |
-
attention_mask=attention_mask,
|
218 |
-
max_new_tokens=max_new_tokens,
|
219 |
-
do_sample=True,
|
220 |
-
temperature=0.7,
|
221 |
-
)
|
222 |
-
|
223 |
-
generated_ids = output[0]
|
224 |
-
prompt_len = input_ids.shape[1]
|
225 |
-
generated_tokens = generated_ids[prompt_len:]
|
226 |
-
result = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
227 |
-
return result
|
228 |
-
|
229 |
-
def get_chat_template_tokens(self):
|
230 |
-
allowed_token_chat = [
|
231 |
-
{"role": "user", "content": ""},
|
232 |
-
{"role": "assistant", "content": ""}
|
233 |
-
]
|
234 |
-
allowed_special_tokens = self.tokenizer.apply_chat_template(allowed_token_chat, tokenize=True)
|
235 |
-
return allowed_special_tokens
|
236 |
-
|
237 |
-
@abstractmethod
|
238 |
-
def load_dataset_from_hf(self):
|
239 |
-
"""
|
240 |
-
Define your own loading method if needed.
|
241 |
-
:return: Dataset
|
242 |
-
"""
|
243 |
-
print("Loading dataset from Hugging Face.")
|
244 |
-
start_time = datetime.now()
|
245 |
-
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
246 |
-
print("Dataset loaded.")
|
247 |
-
|
248 |
-
# Load 50 from each dataset
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
pass
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from datasets import load_dataset
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import openai
|
6 |
+
from peft import PeftModel
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList, LogitsProcessor
|
8 |
+
import torch
|
9 |
+
from typing import List
|
10 |
+
from datetime import datetime
|
11 |
+
load_dotenv()
|
12 |
+
HF_TOKEN=os.getenv("HF_TOKEN")
|
13 |
+
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
+
|
15 |
+
class BaseTask(ABC):
|
16 |
+
_model_cache = {} # Class-level cache for models and tokenizers
|
17 |
+
|
18 |
+
def __init__(self, dataset_repo, model_name):
|
19 |
+
self.dataset_repo = dataset_repo
|
20 |
+
self.dataset = self.load_dataset_from_hf()
|
21 |
+
|
22 |
+
device_count = torch.cuda.device_count()
|
23 |
+
if device_count > 1:
|
24 |
+
self.device = "auto"
|
25 |
+
print(f"Using {device_count} GPUs with auto config.")
|
26 |
+
elif device_count == 1:
|
27 |
+
self.device = "cuda"
|
28 |
+
print(f"Using {device_count} GPU with cuda config.")
|
29 |
+
else:
|
30 |
+
self.device = "cpu"
|
31 |
+
print("No GPU found. Using CPU.")
|
32 |
+
|
33 |
+
self.model, self.tokenizer = self.get_cached_model(model_name, self.device)
|
34 |
+
openai.api_key = OPENAI_KEY
|
35 |
+
|
36 |
+
|
37 |
+
@classmethod
|
38 |
+
def get_cached_model(cls, model_name, device):
|
39 |
+
"""Ensures the same model and tokenizer are used for every instance of subclasses."""
|
40 |
+
if model_name not in cls._model_cache:
|
41 |
+
cls._model_cache[model_name] = cls.load_model(model_name, device)
|
42 |
+
return cls._model_cache[model_name]
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def load_model(model_name: str, device):
|
46 |
+
"""Loads model and tokenizer once and caches it."""
|
47 |
+
print(f"Loading model: {model_name}")
|
48 |
+
start_time = datetime.now()
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_name,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
device_map=device,
|
53 |
+
token=HF_TOKEN, # Replace with actual token
|
54 |
+
)
|
55 |
+
end_time = datetime.now()
|
56 |
+
print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
57 |
+
print("Model loaded.")
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
return model, tokenizer
|
60 |
+
|
61 |
+
# @staticmethod
|
62 |
+
# def load_model(model_name: str, device, weight, dtype, base_model):
|
63 |
+
# """Loads model and tokenizer once and caches it."""
|
64 |
+
# print(f"Loading model: {model_name}")
|
65 |
+
# start_time = datetime.now()
|
66 |
+
# if weight == "Adapter":
|
67 |
+
# base_model_1 = AutoModelForCausalLM.from_pretrained(
|
68 |
+
# base_model,
|
69 |
+
# torch_dtype=dtype,
|
70 |
+
# device_map=device,
|
71 |
+
# token=HF_TOKEN, # Replace with actual token
|
72 |
+
# )
|
73 |
+
# model = PeftModel.from_pretrained(base_model_1, base_model)
|
74 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model)
|
75 |
+
# end_time = datetime.now()
|
76 |
+
# else:
|
77 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
# model_name,
|
79 |
+
# torch_dtype=dtype,
|
80 |
+
# device_map=device,
|
81 |
+
# token=HF_TOKEN, # Replace with actual token
|
82 |
+
# )
|
83 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
+
# end_time = datetime.now()
|
85 |
+
# print(f"Model loaded in {(end_time - start_time).seconds} seconds.")
|
86 |
+
# print("Model loaded.")
|
87 |
+
|
88 |
+
# return model, tokenizer
|
89 |
+
|
90 |
+
|
91 |
+
def generate_response_mcqa(self, msg, max_new_tokens=1, choices: List[str]=[]):
|
92 |
+
# Ensure the tokenizer has a padding token
|
93 |
+
if self.tokenizer.pad_token is None:
|
94 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token # Use EOS token as PAD token
|
95 |
+
|
96 |
+
inputs = self.tokenizer(msg, return_tensors="pt", padding=True, truncation=True)
|
97 |
+
input_ids = inputs.input_ids
|
98 |
+
attention_mask = inputs.attention_mask
|
99 |
+
|
100 |
+
if self.model.config.pad_token_id is None:
|
101 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
102 |
+
|
103 |
+
# Get token IDs for answer choices
|
104 |
+
valid_answers = choices
|
105 |
+
valid_token_ids = [self.tokenizer.convert_tokens_to_ids(ans) for ans in valid_answers]
|
106 |
+
|
107 |
+
class MultipleChoiceLogitsProcessor:
|
108 |
+
def __call__(self, input_ids, scores):
|
109 |
+
mask = torch.full_like(scores, float("-inf"))
|
110 |
+
mask[:, valid_token_ids] = scores[:, valid_token_ids] # Allow only valid tokens
|
111 |
+
return mask
|
112 |
+
|
113 |
+
logits_processor = LogitsProcessorList([MultipleChoiceLogitsProcessor()])
|
114 |
+
|
115 |
+
output = self.model.generate(
|
116 |
+
input_ids,
|
117 |
+
attention_mask=attention_mask, # Fix: Pass attention_mask to avoid warning
|
118 |
+
max_new_tokens=max_new_tokens,
|
119 |
+
logits_processor=logits_processor
|
120 |
+
)
|
121 |
+
answer = self.tokenizer.decode(output[0][-1])
|
122 |
+
|
123 |
+
return answer
|
124 |
+
|
125 |
+
def generate_response_mcqa_multi_token(self, msg, max_new_tokens=2, choices: list = []):
|
126 |
+
"""
|
127 |
+
Handles multiple-choice questions where answers might have multiple tokens.
|
128 |
+
"""
|
129 |
+
# Ensure tokenizer has proper special tokens set
|
130 |
+
if self.tokenizer.pad_token is None:
|
131 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
132 |
+
|
133 |
+
if self.model.config.pad_token_id is None:
|
134 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
135 |
+
|
136 |
+
chat = [
|
137 |
+
{"role": "user", "content": "You are a multiple choice question-answering chatbot. Do not give an answer that is not included in the choices. Only answer with letters like A, B, C, D..."},
|
138 |
+
{"role": "assistant", "content": "I am ready to answer your questions. Feel free to ask anything.\n"},
|
139 |
+
{"role": "user", "content": f"{msg}"},
|
140 |
+
]
|
141 |
+
formatted_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
142 |
+
#print(formatted_chat)
|
143 |
+
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
144 |
+
|
145 |
+
if self.device == "auto":
|
146 |
+
input_ids = inputs.input_ids
|
147 |
+
attention_mask = inputs.attention_mask
|
148 |
+
else:
|
149 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
150 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
151 |
+
|
152 |
+
# Generate the sequence of letters starting from 'A'
|
153 |
+
letters = [chr(ord('A') + i) for i in range(len(choices))] # Create option letters A, B, C, D, E, ...
|
154 |
+
encoded_choices = [self.tokenizer.encode(letter, add_special_tokens=False) for letter in letters]
|
155 |
+
flattened_encoded_choices = [item for sublist in encoded_choices for item in sublist] # Flatten the list
|
156 |
+
#print(flattened_encoded_choices)
|
157 |
+
|
158 |
+
allowed_tokens = flattened_encoded_choices
|
159 |
+
allowed_tokens += self.get_chat_template_tokens() # Get the special chat tokens
|
160 |
+
allowed_token_ids = set(allowed_tokens) # Ensure uniqueness
|
161 |
+
|
162 |
+
# Custom LogitsProcessor to restrict generation
|
163 |
+
class RestrictToABCDLogitsProcessor(LogitsProcessor):
|
164 |
+
def __call__(self, input_ids, scores):
|
165 |
+
mask = torch.full_like(scores, float("-inf")) # Block all tokens
|
166 |
+
mask[:, list(allowed_token_ids)] = scores[:, list(allowed_token_ids)] # Allow only A, B, C, D tokens
|
167 |
+
return mask
|
168 |
+
logits_processor = LogitsProcessorList([RestrictToABCDLogitsProcessor()])
|
169 |
+
|
170 |
+
# Generate response
|
171 |
+
output = self.model.generate(
|
172 |
+
input_ids,
|
173 |
+
do_sample=True,
|
174 |
+
attention_mask=attention_mask,
|
175 |
+
max_new_tokens=max_new_tokens,
|
176 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
177 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
178 |
+
temperature=0.4,
|
179 |
+
logits_processor=logits_processor,
|
180 |
+
)
|
181 |
+
generated_ids = output[0] # The generated sequence including the prompt
|
182 |
+
generated_tokens = generated_ids[len(input_ids[0]):] # Exclude the input_ids part
|
183 |
+
generated_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
184 |
+
return generated_text
|
185 |
+
|
186 |
+
def generate_response(self, prompt: str, max_new_tokens: int = 100) -> str:
|
187 |
+
|
188 |
+
if self.tokenizer.pad_token is None:
|
189 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
190 |
+
|
191 |
+
if self.model.config.pad_token_id is None:
|
192 |
+
self.model.config.pad_token_id = self.tokenizer.eos_token_id
|
193 |
+
|
194 |
+
chat = [
|
195 |
+
{"role": "user", "content": "You are a helpful AI assistant."},
|
196 |
+
{"role": "assistant", "content": "I am here to help you with any questions you may have."},
|
197 |
+
{"role": "user", "content": prompt},
|
198 |
+
]
|
199 |
+
|
200 |
+
formatted_chat = self.tokenizer.apply_chat_template(
|
201 |
+
chat,
|
202 |
+
tokenize=False,
|
203 |
+
add_generation_prompt=True
|
204 |
+
)
|
205 |
+
|
206 |
+
inputs = self.tokenizer(formatted_chat, return_tensors="pt", padding=True, truncation=True)
|
207 |
+
|
208 |
+
if self.device == "auto":
|
209 |
+
input_ids = inputs.input_ids
|
210 |
+
attention_mask = inputs.attention_mask
|
211 |
+
else:
|
212 |
+
input_ids = inputs.input_ids.to(self.model.device)
|
213 |
+
attention_mask = inputs.attention_mask.to(self.model.device)
|
214 |
+
|
215 |
+
output = self.model.generate(
|
216 |
+
input_ids,
|
217 |
+
attention_mask=attention_mask,
|
218 |
+
max_new_tokens=max_new_tokens,
|
219 |
+
do_sample=True,
|
220 |
+
temperature=0.7,
|
221 |
+
)
|
222 |
+
|
223 |
+
generated_ids = output[0]
|
224 |
+
prompt_len = input_ids.shape[1]
|
225 |
+
generated_tokens = generated_ids[prompt_len:]
|
226 |
+
result = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
227 |
+
return result
|
228 |
+
|
229 |
+
def get_chat_template_tokens(self):
|
230 |
+
allowed_token_chat = [
|
231 |
+
{"role": "user", "content": ""},
|
232 |
+
{"role": "assistant", "content": ""}
|
233 |
+
]
|
234 |
+
allowed_special_tokens = self.tokenizer.apply_chat_template(allowed_token_chat, tokenize=True)
|
235 |
+
return allowed_special_tokens
|
236 |
+
|
237 |
+
@abstractmethod
|
238 |
+
def load_dataset_from_hf(self):
|
239 |
+
"""
|
240 |
+
Define your own loading method if needed.
|
241 |
+
:return: Dataset
|
242 |
+
"""
|
243 |
+
print("Loading dataset from Hugging Face.")
|
244 |
+
start_time = datetime.now()
|
245 |
+
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
246 |
+
print("Dataset loaded.")
|
247 |
+
|
248 |
+
# Load 50 from each dataset
|
249 |
+
mcqa_sample_size = 3
|
250 |
+
if len(dataset) > mcqa_sample_size:
|
251 |
+
dataset = dataset.shuffle(seed=42).select(range(mcqa_sample_size))
|
252 |
+
end_time = datetime.now()
|
253 |
+
print(f"Dataset loaded in {(end_time - start_time).seconds} seconds.")
|
254 |
+
return dataset
|
255 |
+
|
256 |
+
def load_dataset_lmjudge_from_hf(self):
|
257 |
+
"""
|
258 |
+
Define your own loading method if needed.
|
259 |
+
:return: Dataset
|
260 |
+
"""
|
261 |
+
print("Loading dataset from Hugging Face.")
|
262 |
+
start_time = datetime.now()
|
263 |
+
dataset= load_dataset(self.dataset_repo, token=HF_TOKEN, split="train")
|
264 |
+
print("Dataset loaded.")
|
265 |
+
|
266 |
+
#Load 100 from each dataset
|
267 |
+
llmjudge_sample_size = 3
|
268 |
+
if len(dataset) > llmjudge_sample_size:
|
269 |
+
dataset = dataset.shuffle(seed=42).select(range(llmjudge_sample_size))
|
270 |
+
end_time = datetime.now()
|
271 |
+
print(f"Dataset loaded in {(end_time - start_time).seconds} seconds.")
|
272 |
+
return dataset
|
273 |
+
|
274 |
+
@abstractmethod
|
275 |
+
def evaluate(self):
|
276 |
pass
|