model-eval-be / src /deepeval /faithfulness_task.py
Ahmet Kaan Sever
Fixed lm judge abstraction
f74f2a9
from datetime import datetime
from src.deepeval.base_task import BaseTask
from deepeval.metrics import FaithfulnessMetric
from deepeval.test_case import LLMTestCase
from typing import Any
class FaithfulnessTask(BaseTask):
def __init__(self, model_name: str):
super().__init__("metunlp/sosyoloji_faithfulness", model_name=model_name)
def load_dataset_from_hf(self):
dataset = super().load_dataset_lmjudge_from_hf()
return dataset
def evaluate(self) -> dict[str, Any]:
results = []
total_model_time = 0
total_judge_time = 0
for i, row in enumerate(self.dataset):
start_model = datetime.now()
context = row["context"]
question = row["question"]
prompt = (
f"Context: {context}\n"
f"Question: {question}\n"
f"Answer:"
)
generated_answer = self.generate_response(prompt, max_new_tokens=100)
end_model = datetime.now()
total_model_time += (end_model - start_model).total_seconds()
start_judge = datetime.now()
test_case = LLMTestCase(
input=question,
actual_output=generated_answer,
retrieval_context=[context]
)
metric = FaithfulnessMetric(
threshold=0.0,
model="gpt-4o-mini",
include_reason=True
)
metric.measure(test_case)
end_judge = datetime.now()
total_judge_time += (end_judge - start_judge).total_seconds()
results.append({
"index": i,
"score": metric.score,
"reason": metric.reason,
"score_breakdown": metric.score_breakdown,
"context": context,
"question": question,
"answer": generated_answer
})
#Sum all scores in results and divide to nubmer of results
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
print(f"Total model time: {total_model_time} seconds")
print(f"Total judge time: {total_judge_time} seconds")
return {"results": overallScore}