Spaces:
Running
on
L4
Running
on
L4
from src.deepeval.base_task import BaseTask | |
from collections import defaultdict | |
from src.deepeval.utils import accuracy, accuracy_standard_error | |
from typing import Any | |
import os | |
import ast | |
import re | |
from datasets import load_dataset,get_dataset_split_names | |
HF_TOKEN=os.getenv("HF_TOKEN") | |
class MetaphorsAndIdiomsTask(BaseTask): | |
def __init__(self, model_name): | |
super().__init__("metunlp/metaphors_and_idioms", model_name=model_name) | |
def load_dataset_from_hf(self): | |
dataset = super().load_dataset_from_hf() | |
return dataset # dataset.select(range(min(10, len(dataset)))) | |
def evaluate(self) -> dict[str, Any]: | |
responses = [] | |
difficulty_results = defaultdict(lambda: defaultdict(lambda: {'correct': 0, 'total': 0})) | |
total_count = 0 | |
true = 0 | |
for row in self.dataset: | |
total_count += 1 | |
# Get values from row | |
category = "hard" if row["level"]== 1 else "easy" if row["level"] == 0 else None | |
answer_index = row["answer"] | |
correct_answer_letter = chr(65 + answer_index) | |
context = row["context"] | |
choices = ast.literal_eval(row["choices"]) # Convert string to list | |
formatted_choices = "\n".join([f"{chr(65 + i)}: {choice}" for i, choice in enumerate(choices)]) | |
subset = row["idiom_type"] | |
if subset == "atasözü": | |
question = "Aşağıda verilen durum hangi atasözü ile en iyi ifade edilebilir?" | |
elif subset == "deyim": | |
question = """Verilen bağlamda "[MASKED]" ile boş bırakılan yere hangi deyim getirilirse cümlenin akışı anlamlı olur?""" | |
else: | |
question = "Aşağıda verilen durum hangi atasözü ile en iyi ifade edilebilir?" | |
# Construct the prompt/message | |
instruction = "" | |
prompt = f"Soru: {question}\nBağlam: {context}\nSeçenekler:\n{formatted_choices}\n{instruction}\n" | |
message = prompt | |
# Get/format answer of the model | |
model_answer = self.generate_response_mcqa_multi_token(message, choices=choices, max_new_tokens=2) | |
responses.append(model_answer) | |
model_answer_cleaned = model_answer.strip().replace('\n', '').replace(' ', '').upper().replace(':','') | |
# Check if correct based on metric | |
if correct_answer_letter == model_answer_cleaned: | |
true += 1 | |
difficulty_results[subset][category]['correct'] += 1 | |
difficulty_results[subset][category]['total'] += 1 | |
# Print results categorized by difficulty | |
for subset in difficulty_results.keys(): | |
subset_results = difficulty_results[subset] | |
for category, stats in subset_results.items(): | |
correct = stats['correct'] | |
total = stats['total'] | |
calculatedAccuracy = correct / total if total > 0 else 0 | |
print(f"{subset.capitalize()} {category.capitalize()} Accuracy: {calculatedAccuracy:.2%} ({correct}/{total})") | |
print("Results:", responses) | |
print("Overall Accuracy:", true / total_count) | |
acc = accuracy(true, total_count) | |
acc_stderr = accuracy_standard_error(acc, total_count) | |
return {"acc": acc, "acc_stderr": acc_stderr} | |