model-eval-be / src /deepeval /summarization_task.py
Ahmet Kaan Sever
Fixed lm judge abstraction
f74f2a9
from datetime import datetime
from src.deepeval.base_task import BaseTask
from deepeval.metrics import SummarizationMetric
from deepeval.test_case import LLMTestCase
from typing import Any
class SummarizationTask(BaseTask):
def __init__(self, model_name: str):
super().__init__("metunlp/summarization_tr", model_name=model_name)
def load_dataset_from_hf(self):
dataset = super().load_dataset_lmjudge_from_hf()
return dataset
def evaluate(self) -> dict[str, Any]:
results = []
total_model_time = 0
total_judge_time = 0
for i, row in enumerate(self.dataset):
start_model = datetime.now()
text_data = row["text"] # Metnin key'i dataset'e göre değişebilir
prompt = (
f"Aşağıdaki metin için Türkçe bir özet oluşturun.\n"
f"Metin: {text_data}\n\n"
"Özet:"
)
generated_summary = self.generate_response(prompt, max_new_tokens=200)
end_model = datetime.now()
total_model_time += (end_model - start_model).total_seconds()
# print(f"Text: {text_data}\n")
# print(f"Summary: {generated_summary}\n")
start_judge = datetime.now()
test_case = LLMTestCase(input=text_data, actual_output=generated_summary)
metric = SummarizationMetric(
threshold=0.0,
model="gpt-4o-mini",
)
metric.measure(test_case)
end_judge = datetime.now()
total_judge_time += (end_judge - start_judge).total_seconds()
# print(f"Reason: {metric.reason}")
# print(f"Score Breakdown: {metric.score_breakdown}")
results.append({
"index": i,
"score": metric.score,
"reason": metric.reason,
"score_breakdown": metric.score_breakdown,
"text": text_data,
"summary": generated_summary
})
#Sum all scores in results and divide to nubmer of results
overallScore = (sum([result["score"] for result in results]) / len(results)) * 100
print(f"Total model time: {total_model_time} seconds")
print(f"Total judge time: {total_judge_time} seconds")
return {"results": overallScore}